Involvement of Dopamine Transporters in Psychiatric Disorders
Abstract
The plasma membrane dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2) are key regulators of dopamine neurotransmission. DAT acts to terminate the actions of dopamine by rapidly removing dopamine from the synapse, while VMAT2 mediates loading of dopamine from the cytoplasm to vesicles for storage and subsequent release. Recent data from our laboratories and others’ suggest that perturbation of the tightly regulated balance between these two transporters alters dopamine function and may predispose the neuron to damage by a variety of insults. While the selective degeneration of DAT- and VMAT2- expressing dopamine nerve terminals in the striatum that leads to Parkinson’s disease is the most well known example, several other disorders may result or be exacerbated by the altered transporter function. Data from cell culture, knockout models, and human studies reveal that DAT and VMAT2 expression can predict the selective vulnerability of neuronal populations. Here, we review the role of DAT and VMAT2 in neurodegenerative disease and suggest how these findings can be applied to our understanding of psychiatric disorders.
Keywords
Dopamine Transporter Tourette Syndrome Dopamine Neuron Vesicular Monoamine Transporter MPTP ToxicityPreview
Unable to display preview. Download preview PDF.
References
- Backman, L., Robins-Wahlin, T. B., Lundin, A., Ginovart, N., Farde, L. (1997). Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 120, 2207–17.PubMedCrossRefGoogle Scholar
- Barrickman, L., Noyes, R., Kuperman, S., Schumacher, E., Verda, M. (1991). Treatment of ADHD with fluoxetine: a preliminary trial. J Am Acad Child Adolesc Psychiatry 30, 762–7.PubMedGoogle Scholar
- Ben-Shachar, D., Zuk, R., Glinka, Y. (1995). Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64, 718–23.PubMedCrossRefGoogle Scholar
- Blakely, R. D., Berson, H. E., Fremeau, R. T., Jr., Caron, M. G., Peek, M. M., Prince, H. K., Bradley, C. C. (1991). Cloning and expression of a functional serotonin transporter from rat brain. Nature 354, 66–70.PubMedCrossRefGoogle Scholar
- Blum, K., Braverman, E. R., Wu, S., Cull, J. G., Chen, T. J., Gill, J., Wood, R., Eisenberg, A., Sherman, M., Davis, K. R., Matthews, D., Fischer, L., Schnautz, N., Walsh, W., Pontius, A. A., Zedar, M., Kaats, G., Comings, D. E. (1997). Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB). Mol Psychiatry 2, 239–46.PubMedCrossRefGoogle Scholar
- Bodeau-Pean, S., Laurent, C., Campion, D., Jay, M., Thibaut, F., Dollfus, S., Petit, M., Samolyk, D., d’Amato, T., Martinez, M. et al. (1995). No evidence for linkage or association between the dopamine transporter gene and schizophrenia in a French population. Psychiatry Res 59, 1–6.PubMedCrossRefGoogle Scholar
- Boykin, M. J., Chetty, C. S., Rajanna, B. (1991). Effects of lead on kinetics of 3H-dopamine uptake by rat brain synaptosomes. Ecotoxicol Environ Saf 22, 88–93.PubMedCrossRefGoogle Scholar
- Brockel, B. J., Cory-Slechta, D.A. (1998). Lead, attention, and impulsive behavior: changes in a fixed-ratio waiting-for-reward paradigm. Pharmacol Biochem Behav 60, 545–552.PubMedCrossRefGoogle Scholar
- Bruss, M., Porzgen, P., Bryan-Lluka, L. J, Bonisch, H. (1997). The rat norepinephrine transporter: molecular cloning from PC12 cells and functional expression. Brain Res Mol Brain Res 52, 257–62.PubMedCrossRefGoogle Scholar
- Carlsson, A. (1987). Perspectives on the discovery of central monoaminergic neurotransmission. Annu Rev Neurosci 10, 19–40.PubMedCrossRefGoogle Scholar
- Chiba, K., Trevor, A. J, Castagnoli, N., Jr. (1985). Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem Biophys Res Commun 128, 1228–32.PubMedCrossRefGoogle Scholar
- Chinaglia, G., Alvarez, F. J., Probst, A, Palacios, J. M. (1992). Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’ s disease and progressive supranuclear palsy: a quantitative autoradiographic study using [3H]mazindol. Neuroscience 49, 317–27.PubMedCrossRefGoogle Scholar
- Ciliax, B. J., Heilman, C., Demchyshyn, L. L., Pristupa, Z. B., Ince, E., Hersch, S. M., Niznik, H. B, Levey, A. I. (1995). The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15, 1714–23.PubMedGoogle Scholar
- Comings, D. E., Wu, S., Chiu, C., Ring, R. H., Gade, R., Ahn, C., MacMurray, J. P., Dietz, G, Muhleman, D. (1996). Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: the additive and subtractive effect of the three dopaminergic genes-DRD2, D beta H, and DATI. Am J Med Genet 67, 264–88.PubMedCrossRefGoogle Scholar
- Cook, E. H., Jr., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E, Leventhal, B. L. (1995). Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56, 993–8.PubMedGoogle Scholar
- Cummings, J. L. (1992). Depression in Parkinson’s disease: a review. American Journal of Psychiatry 149, 443–454.PubMedGoogle Scholar
- Daniels, A. J. and Reinhard, J. F., Jr. (1988). Energy-driven uptake of the neurotoxin 1-methyl-4phenylpyridinium into chromaffin granules via the catecholamine transporter. J Biol Chem 263, 5034–6.PubMedGoogle Scholar
- Daniels, G. M. and Amara, S.G. (1999). Regulated Trafficking of the Human Dopamine Transporter. Clatherin-mediated internalization and lysosomal degradation in response to phorbol esters. J. Biol. Chem. 274, 35794–35801.PubMedCrossRefGoogle Scholar
- Del Zompo, M., Piccardi, M. P., Ruiu, S., Quartu, M., Gessa, G. L, Vaccari, A. (1993). Selective MPP+ uptake into synaptic dopamine vesicles: passible involvement in MPTP neurotoxicity. Br J Pharmacol 109, 411–4.PubMedCrossRefGoogle Scholar
- Donovan, D. M., Miner, L.L., Perry, M.P., Revay, R.S., Sharpe, L.G., Przedborski, S., Kostic, V., Philpot, R.M., Kirstein, C.L., Rothman, R.B., Schindler, C.W, UM, G.R. (1999). Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression. Molecular Brain Research 73, 37–49.PubMedCrossRefGoogle Scholar
- Edwards, R. H. (1993). Neural degeneration and the transport of neurotransmitters. Ann Neurol 34, 638–45.PubMedCrossRefGoogle Scholar
- Erickson, J. D., Eiden, L. E, Hoffman, B. J. (1992). Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A 89, 10993–7.PubMedCrossRefGoogle Scholar
- Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E, Weihe, E. (1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 93, 5166–71.PubMedCrossRefGoogle Scholar
- Fischman, A. J., Babich, J. W., Elmaleh, D. R., Barrow, S. A., Meltzer, P., Hanson, R. N, Madras, B. K. (1997). SPECT imaging of dopamine transporter sites in normal and MPTP-Treated rhesus monkeys. J Nucl Med 38, 144–50.PubMedGoogle Scholar
- Fischman, A. J., Bonab, A. A., Babich, J. W., Palmer, E. P., Alpert, N. M., Elmaleh, D. R., Callahan, R. J., Barrow, S. A., Graham, W., Meltzer, P. C., Hanson, R. N, Madras, B. K. (1998). Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 29, 128–41.PubMedCrossRefGoogle Scholar
- Fleming, L., Mann, J. B., Bean, J., Briggle, T, Sanchez-Ramos, J. R. (1994). Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 36, 100–3.PubMedCrossRefGoogle Scholar
- Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D, Edwards, R. H. (1997). Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 127183.Google Scholar
- Forno, L. S., DeLanney, L. E., Irwin, I, Langston, J. W. (1993). Similarities and differences between MPTPinduced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 60, 600–8.PubMedGoogle Scholar
- Frey, K. A., Koeppe, R. A., Kilbourn, M. R., Vander Borght, T. M., Albin, R. L., Gilman, S, Kuhl, D. E. (1996). Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40, 873–84.PubMedCrossRefGoogle Scholar
- Fritz, J. D., Jayanthi, L. D., Thoreson, M. A, Blakely, R. D. (1998). Cloning and chromosomal mapping of the murine norepinephrine transporter. J Neurochem 70, 2241–51.PubMedCrossRefGoogle Scholar
- Fumagalli, F., Gainetdinov, R. R., Valenzano, K., Wang, Y. M., Miller, G. W, Caron, M. G. (1999). Increased methamphetamine toxicity in heterozygote VMAT2 knockout mice. J Neuroscience 19, 2424–2431.Google Scholar
- Fumagalli, F., Gainetdinov, R. R., Valenzano, K. J, Caron, M. G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci 18, 4861–9.PubMedGoogle Scholar
- Gainetdinov, R. R., Fumagalli, F., Jones, S. R, Caron, M. G. (1997). Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69, 1322–5.PubMedCrossRefGoogle Scholar
- Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W, Caron, M. G. (1998). Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem 70, 1973–8.PubMedCrossRefGoogle Scholar
- Gainetdinov, R. R., Jones, S. R., Fumagalli, F., Wightman, R. M, Caron, M. G. (1998). Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26, 148–53.PubMedCrossRefGoogle Scholar
- Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Levin, E. D., Jaber, M, Caron, M. G. (1999). Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283, 397401.Google Scholar
- Gelernter, J., Kranzler, H, Lacobelle, J. (1998). Population studies of polymorphisms at loci of neuropsychiatric interest (tryptophan hydroxylase (TPH), dopamine transporter protein (SLC6A3), D3 dopamine receptor (DRD3), apolipoprotein E (APOE), mu opioid receptor (OPRM1), and ciliary neurotrophic factor (CNTF)). Genomics 52, 289–97.Google Scholar
- Gelernter, J., Kranzler, H. R., Satel, S. L, Rao, P. A. (1994). Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 11, 195–200.PubMedCrossRefGoogle Scholar
- Gill, M., Daly, G., Heron, S., Hawi, Z, Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 2, 311–313.PubMedCrossRefGoogle Scholar
- Ginovart, N., Lundin, A., Farde, L., Halldin, C., Backman, L., Swahn, C. G., Pauli, S, Sedvall, G. (1997). PET study of the pre-and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120, 503–14.PubMedCrossRefGoogle Scholar
- Giovanni, A., Sieber, B. A., Heikkila, R. E, Sonsalla, P. K. (1994a). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration. J Pharmacol Exp Ther 270, 1000–7.PubMedGoogle Scholar
- Giovanni, A., Sonsalla, P. K, Heikkila, R. E. (1994b). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine. Part 2: Central administration of 1methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270, 1008–14.PubMedGoogle Scholar
- Giros, B. and Caron, M. G. (1993). Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14, 43–9.PubMedCrossRefGoogle Scholar
- Giros, B., el Mestikawy, S., Godinot, N., Zheng, K., Han, H., Yang-Feng, T, Caron, M. G. (1992). Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42, 383–90.PubMedGoogle Scholar
- Giros, B., Jaber, M., Jones, S. R., Wightman, R. M, Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 60612.CrossRefGoogle Scholar
- Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L, Richardson, R. J. (1998). The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, 1346–50.PubMedCrossRefGoogle Scholar
- Graybiel, A. M., Moratalla, R., Quinn, B., DeLanney, L. E., Irwin, I, Langston, J. W. (1993). Early-stage loss of dopamine uptake-site binding in MPTP-treated monkeys. Adv Neurol 60, 34–9.PubMedGoogle Scholar
- Hastings, T. G., Lewis, D. A, Zigmond, M. J. (1996). Reactive dopamine metabolites and neurotoxicity: implications for Parkinson’s disease. Adv Exp Med Biol 387, 97–106.PubMedGoogle Scholar
- Heikkila, R. E., Hess, A, Duvoisin, R. C. (1984). Dopaminergic neurotoxicity of 1-methyl-4-phenyl1,2,5,6- tetrahydropyridine in mice. Science 224, 1451–3.PubMedCrossRefGoogle Scholar
- Hersch, S. M., Yi, H., Heilman, C. J., Edwards, R. H, Levey, A. I. (1997). Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388, 211–27.PubMedCrossRefGoogle Scholar
- Inada, T., Sugita, T., Dobashi, I., Inagaki, A., Kitao, Y., Matsuda, G., Kato, S., Takano, T., Yagi, G, Asai, M. (1996). Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode. Am J Med Genet 67, 406–8.PubMedCrossRefGoogle Scholar
- Irwin, 1., DeLanney, L. E., Forno, L. S., Finnegan, K. T., Di Monte, D. A, Langston, J. W. (1990). The evolution of nigrostriatal neurochemical changes in the MPTP- treated squirrel monkey. Brain Res 531, 242–52.PubMedCrossRefGoogle Scholar
- Javitch, J. A., D’Amato, R. J., Strittmatter, S. M, Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6–tetrahydropyridine: uptake of the metabolite N-methyl-4phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82, 2173–7.PubMedCrossRefGoogle Scholar
- Jellinger, K., Linert, L., Kienzl, E., Herlinger, E, Youdim, M. B. (1995). Chemical evidence for 6hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm Suppl 46, 297–314.PubMedGoogle Scholar
- Jones, S. R., Bowman, B. P., Kuhn, C. M, Wightman, R. M. (1996). Development of dopamine neurotransmission and uptake inhibition in the caudate nucleus as measured by fast-cyclic voltammetry. Synapse 24, 305–7.PubMedCrossRefGoogle Scholar
- Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M, Caron, M. G. (1998). Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A 95, 4029–34.PubMedCrossRefGoogle Scholar
- Kawai, H., Makino, Y., Hirobe, M, Ohta, S. (1998). Novel endogenous 1,2,3,4-tetrahydroisoquinoline derivatives: uptake by dopamine transporter and activity to induce parkinsonism. J Neurochem 70, 745–51.PubMedCrossRefGoogle Scholar
- Kazumata, K., Dhawan, V., Chaly, T., Antonini, A., Margouleff, C., Belakhlef, A., Neumeyer, J, Eidelberg, D. (1998). Dopamine transporter imaging with fluorine-l8-FPCIT and PET. J Nucl Med 39, 1521–30.PubMedGoogle Scholar
- King, N., Bassett, A. S., Honer, W. G., Masellis, M, Kennedy, J. L. (1997). Absence of linkage for schizophrenia on the short arm of chromosome 5 in multiplex Canadian families. Am J Med Genet 74, 472–4.PubMedCrossRefGoogle Scholar
- Kitayama, S., Shimada, S., Uhl, G. R. (1992). Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter eDNA. Ann Neurol 32, 109–11.PubMedCrossRefGoogle Scholar
- Kokkinidis, L. and Anisman, H. (1980). Amphetamine models of paranoid schizophrenia: an overview and elaboration of animal experimentation. Psychol Bull 88, 551–79.PubMedCrossRefGoogle Scholar
- Koob, G. F., Rocio, M., Carrera, A., Gold, L. H., Heyser, C. J., Maldonado-Irizarry, C., Markou, A., Parsons, L. H., Roberts, A. J., Schulteis, G., Stinus, L., Walker, J. R., Weissenborn, R, Weiss, F. (1998). Substance dependence as a compulsive behavior. J Psychopharmacol 12, 39–48.PubMedCrossRefGoogle Scholar
- Kuhar, M. J. (1992). Molecular pharmacology of cocaine: a dopamine hypothesis and its implications. Ciba Found Symp 166, 81–9.PubMedGoogle Scholar
- Kuikka, J. T., Tiihonen, J., Bergstrom, K. A., Karhu, J., Rasanen, P, Eronen, M. (1998). Abnormal structure of human striatal dopamine re-uptake sites in habitually violent alcoholic offenders: a fractal analysis [In Process Citation]. Neurosci Lett 253, 195–7.PubMedCrossRefGoogle Scholar
- Laakso, A., Bergman, J., Haaparanta, M., Vilkman, H., Solin, O, Hietala, J. (1998). [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects. Synapse 28, 244–50.Google Scholar
- Langston, J. W., Ballard, P., Tetrud, J. W, Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–80.PubMedCrossRefGoogle Scholar
- Lesch, K. P., Gross, J., Wolozin, B. L., Franzck, E., Bengel, D., Riederer, P, Murphy, D. L. (1994). Direct sequencing of the reserpine-sensitive vesicular monoamine transporter complementary DNA in unipolar depression and manic depressive illness. Psychiatr Genet 4, 153–160.PubMedCrossRefGoogle Scholar
- Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G. G., Eisenberg, D., Brecha, N, Edwards, R. H. (1992a). A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70, 539–51.PubMedCrossRefGoogle Scholar
- Liu, Y., Roghani, A, Edwards, R. H. (1992b). Gene transfer of a reserpine-sensitive mechanism of resistance to N- methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A 89, 9074–8.PubMedCrossRefGoogle Scholar
- Lucki, I. (1998). The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44, 151–62.PubMedCrossRefGoogle Scholar
- Madras, B. K., Meltzer, P. C., Liang, A. Y., Elmaleh, D. R., Babich, J, Fischman, A. J. (1998).Google Scholar
- Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse 29, 93–104.Google Scholar
- Markey, S. P., Johannessen, J. N., Chiueh, C. C., Burns, R. S, Herkenham, M. A. (1984). Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311, 464–7.PubMedCrossRefGoogle Scholar
- Markou, A., Kosten, T. R. and Koob, G. F. (1998). Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18, 135–74.Google Scholar
- McKeith, I. G., Perry, E. K, Perry, R. H. (1999). Report of the second dementia with Lewy body international workshop: diagnosis and treatment. Consortium on Dementia with Lewy Bodies. Neurology 53, 902–5.PubMedCrossRefGoogle Scholar
- McNaught, K. S., Carrupt, P. A., Altomare, C., Cellamare, S., Carotti, A., Testa, B., Jenner, P, Marsden, C. D. (1998). Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson’s disease. Biochem Pharmacol 56, 921–33.PubMedCrossRefGoogle Scholar
- Miller, G. W., Erickson, J. D., Perez, J. T., Penland, S. N., Mash, D. C., Rye, D. B, Levey, A. I. (1999). Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Experimental Neurology 154, 138–148.CrossRefGoogle Scholar
- Miller, G. W., Gainetdinov, R. R., Levey, A. I, Caron, M. G. (1999). Dopamine transporters and neuronal injury. Trends in Pharmacological Sciences 20, 424–429.PubMedCrossRefGoogle Scholar
- Miller, G. W., Gilmor, M. L, Levey, A. I. (1998). Generation of transporter specific antibodies. Methods in Enzymology 296, 407–422.PubMedCrossRefGoogle Scholar
- Miller, G. W., Kirby, M. L., Levey, A. I, Bloomquist, J. R. (1999). Heptachlor alters expression and function of dopamine transporters. Neurotoxicology 20, 631–638.PubMedGoogle Scholar
- Miller, G. W., Staley, J. K., Heilman, C. J., Perez, J. T., Mash, D. C., Rye, D. B, Levey, A. I. (1997). Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 4/, 530–9.Google Scholar
- Moratalla, R., Quinn, B., DeLanney, L. E., Irwin, I., Langston, J. W, Graybiel, A. M. (1992). Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 89, 3859–63.PubMedCrossRefGoogle Scholar
- Morris, E. D., Babich, J. W., Alpert, N. M., Bonab, A. A., Livni, E., Weise, S., Hsu, H., Christian, B. T., Madras, B. K, Fischman, A. J. (1996). Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT. Synapse 24, 262–72.PubMedCrossRefGoogle Scholar
- Naoi, M., Maruyama, W., Kasamatsu, T, Dostert, P. (1998). Oxidation of N-methyl(R)salsolinol: involvement to neurotoxicity and neuroprotection by endogenous catechol isoquinolines. J Neural Transm Suppl 52, 125–38.PubMedCrossRefGoogle Scholar
- Patel, A. P., Cerruti, C., Vaughan, R. A, Kuhar, M. J. (1994). Developmentally regulated glycosylation of dopamine transporter. Brain Res Dev Brain Res 83, 53–8.PubMedCrossRefGoogle Scholar
- Persico, A. M. and Macciardi, F. (1997). Genotypic association between dopamine transporter gene polymorphisms and schizophrenia. Am J Med Genet 74, 53–7.PubMedCrossRefGoogle Scholar
- Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N, Edwards, R. H. (1995). Differential expression of two vesicular monoamine transporters. J Neurosci /5, 6179–88.Google Scholar
- Pifl, C., Giros, B, Caron, M. G. (1993). Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. J Neurosci 13, 424–653.Google Scholar
- Pifl, C., Giros, B, Caron, M. G. (1996a). The dopamine transporter. The cloned target site of parkinsonism-inducing toxins and of drugs of abuse. Adv Neurol 69, 235–8.PubMedGoogle Scholar
- Pifl, C., Hornykiewicz, O., Giros, B, Caron, M. G. (1996b). Catecholamine transporters and 1-methyl-4phenyl-1,2,3,6- tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter. J Pharmacol Exp Ther 277, 1437–43.PubMedGoogle Scholar
- Popper, C. W. (1997). Antidepressants in the treatment of attention-deficit/hyperactivity disorder. J Clin Psychiatry 58, 14–29; discussion 30–1.Google Scholar
- Rabey, J. M., Amir, I., Treves, T. A., Oberman, Z, Korczyn, A. D. (1998). Dopamine uptake by platelet storage granules in first-degree relatives of Tourette’s syndrome patients [In Process Citation]. Biol Psychiatry 44, 1166–70.PubMedCrossRefGoogle Scholar
- Ramamoorthy, S. and Blakely, R. D. (1999). Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285, 763–6.PubMedCrossRefGoogle Scholar
- Reinhard, J. F., Jr., Diliberto, E. J., Jr., Viveros, O. H, Daniels, A. J. (1987). Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells. Proc Natl Acad Sci USA 84, 8160–4.Google Scholar
- Rocha, B. A., Fumagalli, F., Gainetdinov, R. R., Jones, S. R., Ator, R., Giros, B., Miller, G. W, Caron, M. G. (1998). Cocaine self-administration in dopamine transporter knockout mice. Nature Neuroscience 1, 132–137.PubMedCrossRefGoogle Scholar
- Sanghera, M. K., Manaye, K., McMahon, A., Sonsalla, P. K, German, D. C. (1997). Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. Neuroreport 8, 3327–31.PubMedCrossRefGoogle Scholar
- Schuldiner, S., Shirvan, A, Linial, M. (1995). Vesicular neurotransmitter transporters: from bacteria to humans. Physiol Rev 75, 369–92.PubMedGoogle Scholar
- Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M, Uhl, G. (1991). Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA [published erratum appears in Science 1992 Mar 6;255(5049):1195]. Science 254, 576–8.PubMedCrossRefGoogle Scholar
- Shimada, S., Kitayama, S., Walther, D, Uhl, G. (1992). Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Brain Res Mol Brain Res 13, 359–62.PubMedCrossRefGoogle Scholar
- Sibley, D. R. (1999). New insights into dopaminergic receptor function using antisense and genetically altered animals [In Process Citation]. Annu Rev Pharmacol Toxicol 39, 313–41.PubMedCrossRefGoogle Scholar
- Sibley, D. R., Monsma, F. J., Jr., McVittie, L. D., Gerfen, C. R., Burch, R. M, Mahan, L. C. (1992). Molecular neurobiology of dopamine receptor subtypes. Neurochem Int 20 Suppl, 17S - 22S.Google Scholar
- Speciale, S. G., Liang, C. L., Sonsalla, P. K., Edwards, R. H, German, D. C. (1998). The neurotoxin 1methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience 84, 1177–85.PubMedCrossRefGoogle Scholar
- Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S, Uhl, G. R. (1997). VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94, 9938–43.PubMedCrossRefGoogle Scholar
- Tanner, C. M., Ottman, R., Goldman, S. M., Ellenberg, J., Chan, P., Mayeux, R, Langston, J. W. (1999). Parkinson Disease in Twins. Journal American Medical Association 281, 341–346.CrossRefGoogle Scholar
- Ueno, S., Nakamura, M., Mikami, M., Kondoh, K., Ishiguro, H., Arinami, T., Komiyama, T., Mitsushio, H., Sano, A, Tanabe, H. (1999). Identification of a novel polymorphism of the human dopamine transporter ( DATI) gene and the significant association with alcoholism. Mol Psychiatry 4, 552–557.Google Scholar
- Uhl, G. R. (1998). Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43, 555–60.PubMedCrossRefGoogle Scholar
- Vaccari, A. and Saba, P. (1995). The tyramine-labelled vesicular transporter for dopamine: a putative target of pesticides and neurotoxins. Eur J Pharmacol 292, 309–14.PubMedGoogle Scholar
- Waldman, I. D., Rowe, D. C., Abramowitz, A., Kozel, S. T., Mohr, J. H., Sherman, S. L., Cleveland, H. H., Sanders, M. L., Gard, J. M, Stever, C. (1998). Association and Linkage of the Dopamine Transporter Gene and Attention- Deficit Hyperactivity Disorder in Children: Heterogeneity owing to Diagnostic Subtype and Severity. Am J Hum Genet 63, 1767–1776.PubMedCrossRefGoogle Scholar
- Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., Miller, G. W., Wightman, R. M, Caron, M. G. (1997). Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19, 1285–96.PubMedCrossRefGoogle Scholar
- Wellington, C. L., Brinkman, R. R., O’Kusky, J. R, Hayden, M. R. (1997). Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 7, 979–1002.PubMedCrossRefGoogle Scholar
- Wilson, J. M., Kalasinsky, K. S., Levey, A. I., Bergeron, C., Reiber, G., Anthony, R. M., Schmunk, G. A., Shannak, K., Haycock, J. W, Kish, S. J. (1996a). Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2, 699–703.PubMedCrossRefGoogle Scholar
- Wilson, J. M., Levey, A. I., Bergeron, C., Kalasinsky, K., Ang, L., Peretti, F., Adams, V. I., Smialek, J., Anderson, W. R., Shannak, K., Deck, J., Niznik, H. B, Kish, S. J. (1996b). Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann Neurol 40, 428–39.PubMedCrossRefGoogle Scholar
- Wilson, J. M., Levey, A. I., Rajput, A., Ang, L., Guttman, M., Shannak, K., Niznik, H. B., Hornykiewicz, O., Pifl, C., Kish, S. J. (1996c). Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 47, 718–26.PubMedCrossRefGoogle Scholar
- Yelin, R. and Schuldiner, S. (1995). The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Lett 377, 201–7.PubMedCrossRefGoogle Scholar
- Zuddas, A., Fascetti, F., Corsini, G. U, Piccardi, M. P. (1994). In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity. Exp Neurol 127, 54–61.PubMedCrossRefGoogle Scholar