Electrochemical Aspects of Hydrogen in Metals

  • P. K. Subramanyan
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)

Abstract

The deleterious effect that hydrogen produces in metals, known popularly as hydrogen embrittlement, has been the root cause of innumerable investigations.(1–6) The hydrogen that produces embrittlement usually is of electrochemical origin such as corrosion, pickling, electrodeposition, photoelectrolysis (occurring on oxide films of Fe2O3, TiO2, etc.(7–8)) and so on. Involvement of electrochemistry in the study of H in metals is a natural consequence of the origin of the damaging hydrogen. Furthermore, the electrochemical technique of measuring hydrogen permeation developed by Devanatham and Bockris(9–13) is a very convenient and rigorous method for studying fundamental properties such as the diffusion coefficient, solubility, partial molar volume (pmv), heat of solution, etc., of H in metals in the temperature range of aqueous solutions.

Keywords

Hydrogen Embrittlement Edge Dislocation Partial Molar Volume Hydrogen Evolution Reaction Iron Steel Inst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Buzzard and H. E. Cleaves, Hydrogen Embrittlement of Steel (review of literature), National Bureau of Standards Circular 511, Washington, D.C. (1951).Google Scholar
  2. 2.
    D. P. Smith, Hydrogen in Metals, Chicago University Press, Chicago (1948).Google Scholar
  3. 3.
    M. Smialowski, Hydrogen in Steel, Addison-Wesley, Reading, Massachusetts (1962).Google Scholar
  4. 4.
    J. L. Carpenter, Jr. and W. F. Stuhrke, Hydrogen Embrittlement of Structural Alloys-A Technology Survey, NASA-CR-134962, U.S. Dept. of Commerce, NTIS (1976).Google Scholar
  5. 5.
    American Society for Metals, Hydrogen in Metals, Proceedings of an International Symposium, September, 1973.Google Scholar
  6. 6.
    American Society for Metals, Hydrogen Damage, C. D. Beachem, ed., ASTM, Metals Park, Ohio (1977).Google Scholar
  7. 7.
    J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, Mat. Res. Bull. 10, 1023 (1975).CrossRefGoogle Scholar
  8. J. F. Juliao, F. Decker, and M. Abramovitch, J. Electrochem. Soc. 127, 2264 (1980).CrossRefGoogle Scholar
  9. 8.
    K. L. Hardee and A. J. Bard, J. Electrochem. Soc. 123, 1024 (1976).CrossRefGoogle Scholar
  10. J. H. Kennedy, R. Shinar, and J. P. Ziegler, J. Electrochem. Soc. 127, 2307 (1980).CrossRefGoogle Scholar
  11. 9.
    J. O’M. Bockris and M. A. V. Devanathan, ONR Technical Reports 551 (22), 1957.Google Scholar
  12. 10.
    M. A. V. Devanathan and Z. Stachurski, Proc. R. Soc. London 270A, 90 (1962).CrossRefGoogle Scholar
  13. 11.
    M. A. V. Devanathan, Z. Stachurski, and W. Beck, J. Electrochem. Soc. 110, 886 (1963).CrossRefGoogle Scholar
  14. 12.
    M. A. V. Devanathan and Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964).CrossRefGoogle Scholar
  15. 13.
    W. Beck, J. O’M. Bockris, J. McBreen, and L. Namis, Proc. R. Soc. London 290A, 220 (1965).Google Scholar
  16. 14.
    L. Cailetet, Compt. Rend. 58, 327 (1864).Google Scholar
  17. W. H. Johnson, Proc. R. Soc. London 23 (1875).Google Scholar
  18. 16.
    J. O’M. Bockris, Energy: The Solar Hydrogen Alternative, Halsted Press, New York (1975).Google Scholar
  19. 17.
    J. O’M. Bockris, Lectures in Electrochemistry, University of Pennsylvania, Fall, 1965.Google Scholar
  20. 18.
    R. C. Frank, D. E. Swets, and D. L. Fry, J. Appl. Phys. 20 (1958).Google Scholar
  21. 19.
    R. Frauenfelder, J. Chem. Phys. 48, 3955 (1968).CrossRefGoogle Scholar
  22. 20.
    R. Gibala, Trans. Met. Soc. AIME 239, 1574 (1967).Google Scholar
  23. 21.
    J. A. Peterson, R. Gibala, and A. R. Troiano, J. Iron Steel Inst. 207, 86 (1969). Google Scholar
  24. 22.
    K. Skold and G. Nelin, Phys. Chem. Solids 28, 2369 (1967).CrossRefGoogle Scholar
  25. 23.
    W. Gissien, G. Alefold, and T. Springer, J. Phys. Chem. Solids 31, 2361 (1970).CrossRefGoogle Scholar
  26. 24.
    G. M. Padawer and P. N. Adler, Development of a nuclear microprobe technique for hydrogen analysis in selected materials, U.S. Nat. Tech. Inf. Serv., A. D. Report No. 770856/35A (1973).Google Scholar
  27. 25.
    R. Gauthier and P. Pinard, Phys. Status Solidi A 38, 85 (1976).CrossRefGoogle Scholar
  28. 26.
    A. Benninghove, K. H. Muller, C. Plog, M. S. Chamer, and P. Steffens, Surf. Sci. 63, 403 (1977).CrossRefGoogle Scholar
  29. 27.
    T. K. G. Namboodhiri and L. Nanis, Hydrogen permeation and embrittlement in ferrous materials, Office of Naval Research, Technical Report, UPH2–004, (November 1972), NR036–077.Google Scholar
  30. 28.
    J. J. Deluccia, Electrolytic hydrogen in beta titanium, U.S. NTIS.AD. Rep. AD-A028496 (1976).Google Scholar
  31. 29.
    M. G. Fontana and R. W. Staehle, Stress corrosion cracking of metallic materials. Part III-Hydrogen entry and embrittlement in steel, NTIS No. AD/A-010 265, National Technical Information Service, 5285 (1975).Google Scholar
  32. 30.
    M. R. Piggott and A. C. Siarkowski, J. Iron Steel Inst., 901 (1972).Google Scholar
  33. 31.
    N. V. Parthasarathy, Met. Finish. J. 36 (1974).Google Scholar
  34. 32.
    J. P. Nityanandan, H. V. K. Uduppa, H. N. V. Rao, Y. Mahadevan, and K. R. Ramakrishnan, Met. Finish. J. 190 (1974).Google Scholar
  35. 33.
    Y. Saito and K. Nobe, Abstract No. 126, in Extended Abstracts of the Fall Meeting, Electrochemical Society, Atlanta, October, 1977.Google Scholar
  36. 34.
    Materials Science Research Programs, M.I.T. Research Programs for 1980. R. Kirchheim and R. B. M.Lellan, J. Electrochem. Soc. 127, 2419 (1980). P. Kedzierzawski„ Z. SzklarskaSmiabowska, and M. Smialowski, J. Electrochem. Soc. 127, 2550 (1980).Google Scholar
  37. 35.
    J. McBreen, L. Nanis, and W. Beck, J. Electrochem. Soc. 113, 1218 (1966).CrossRefGoogle Scholar
  38. 36.
    E. Gileadi, M. Fullenwider, and J. O’M. Bockris, J. Electrochem. Soc. 113, 928 (1966).Google Scholar
  39. 37.
    J. O’M. Bockris, W. Beck, M. A. Genshaw, P. K. Subramanyan, and F. S. Williams, Acta Metall. 19, 1209 (1971).CrossRefGoogle Scholar
  40. 38.
    L. Nanis and T. R. G. Namboodhiri, J. Electrochem. Soc. 119, 691 (1972).CrossRefGoogle Scholar
  41. 39.
    J. Deluccia, Electrolytic hydrogen in beta titanium, U.S. NTIS AD Rep. AD-A028496 (1976).Google Scholar
  42. 40.
    T. K. G. Namboodhiri and L. Nanis, Hydrogen permeation and embrittlement in ferrous materials, Technical Report, UPD2–004, NR 036–077 (November 1972).Google Scholar
  43. 41.
    C. D. Kim and B. E. Wilde, J. Electrochem. Soc. 118, 202 (1971).CrossRefGoogle Scholar
  44. 42.
    T. C. Franklin and A. W. Beyerlein, Denki Kagaku 41, 186 (1973).Google Scholar
  45. 43.
    B. Baranowski, S. Majchrzak, and T. B. Flanagan, J. Phys. F. Metal Phys. 1 258 (1971).CrossRefGoogle Scholar
  46. 44.
    M. Kuballa and B. Baranowski, Ber. Bunsen. Gesellsch. Phys. Chem. 78, 335 (1974).Google Scholar
  47. 45.
    J. McBreen, Ph.D., thesis, University of Pennsylvania, 1965.Google Scholar
  48. 46.
    J. O’M. Bockris and P. K. Subramanyan, Electrochem. Acta 16, 2169 (1971).CrossRefGoogle Scholar
  49. 47.
    W. H. Trapnal, Chemisorption, Butterworths, London (1955).Google Scholar
  50. 48.
    H. Podgurski, private communication.Google Scholar
  51. 49.
    C. E. Holley, W. J. Worlton, and R. R. Ziegler, U.S.A.E.C. Report, LA-2271 (August 1958).Google Scholar
  52. 50.
    M. Smialowski, in Proceedings of the First International Symposium on Corrosion, held at Ohio State University, Columbus, Ohio, 1967.Google Scholar
  53. 51.
    J. O’M. Bockris, J. McBreen, and L. Nanis, J. Electrochem. Soc. 112, 1125 (1965).Google Scholar
  54. 52.
    J. McBreen and M. A. Genshaw, in Proceedings of the First International Symposium on Corrosion, held at Ohio State University, Columbus, Ohio, 1967.Google Scholar
  55. 53.
    B. V. Tilak and B. E. Conway, Electrochem. Acta 21, 745 (1976).CrossRefGoogle Scholar
  56. 54.
    B. V. Tilak, C. G. Rader, and B. E. Conway, Electrochem. Acta 22, 1167 (1977).CrossRefGoogle Scholar
  57. 55.
    J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 1, Butterworths, London (1954), p. 180.Google Scholar
  58. 56.
    D. B. Matthews, Ph.D. thesis, University of Pennsylvania, 1965.Google Scholar
  59. 57.
    T. P. Radhakrishnan and L. L. Shreir, Electrochem. Acta 11, 1007 (1966).CrossRefGoogle Scholar
  60. 58.
    M. Smialowski and Z. Sklarska-Smialowska, Bull. Acad. Pol. Sci. Cl., 111, 2, 73 (1954).Google Scholar
  61. 59.
    W. Baukloh and G. Zimmerman, Arch. Eisenhutten Wis. 9, 459 (1936).Google Scholar
  62. 60.
    V. V. Kuznetzov and V. V. Frolov, Zh. Prikl. Rhim. Mosk. 35, 582 (1962).Google Scholar
  63. 61.
    P. Bardenheur and H. Ploum, Mitt. Kelmwilh-Inst. Eisenforsch. Dusseld. 16, 129 (1934).Google Scholar
  64. 62.
    J. F. Newman and L. L. Shreir, Corros. Sci. 9, 631 (1969).CrossRefGoogle Scholar
  65. 63.
    K. E. Shuler and K. J. Laidler, J. Chem. Phys. 17, 212 (1949).CrossRefGoogle Scholar
  66. 64.
    S. M. Beloglazov and M. I. Polukarov, Zh. Prikl. Chim. Mosk. 33, 389 (1960).Google Scholar
  67. 65.
    V. P. Alikin, Uchen. Zap. Perm. Gos. Univ. 19, 3 (1961).Google Scholar
  68. 66.
    U. R. Evans, The corrosion and oxidation of metals, in Scientific Principles and Practical Applications, Arnold, London (1961), p. 397.Google Scholar
  69. 67.
    J. O’M. Bockris and R. Thacker, Technical Report No. 3, Office of Naval Research Contract No. NR 551 (22) NRO 36–028 (1958).Google Scholar
  70. 68.
    L. Nanis and J. J. Deluccia, Materials performance and the deep sea, ASTM STP 445, Am. Soc. Testing Materials, (1969), p. 155.Google Scholar
  71. 69.
    J. J. Deluccia, K. Yamakawa, and L. Nanis, Technical Report, UP H 2–001, NR 036–077 (October 1969).Google Scholar
  72. 70.
    F. de Kazinczy, JernkontAnnlv. 139, 885 (1955).Google Scholar
  73. 71.
    J. C. M. Li, R. A. Oriani, and L. S. Darken, Z. Phys. Chem. N.F. 49, 926 (1968).Google Scholar
  74. 72.
    J. W. Gibbs, The Collected Works, Vol. 1, Yale University Press, Hew Haven, Connecticut (1948).Google Scholar
  75. 73.
    J. O’M. Bockris and P. K. Subramanyan, Acta Metall. 19, 1205 (1971).CrossRefGoogle Scholar
  76. 74.
    J. O’M. Bockris and P. K. Subramanyan, Scripta Met. 6, 947 (1972).CrossRefGoogle Scholar
  77. 75.
    P. K. Subramanyan, in MTP International Review of Science, Vol. 6, J. O’M. Bockris, ed., Butterworths, London (1973), Chap. 4, p. 181.Google Scholar
  78. 76.
    W. A. Tiller and R. Schrieffer, Scripta Met. 4, 57 (1970).CrossRefGoogle Scholar
  79. 77.
    W. A. Tiller, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. Staehle, ed., NACE, Houston (1974).Google Scholar
  80. W. A. Tiller, Scripta Mat. 8, 487 (1974).CrossRefGoogle Scholar
  81. 79.
    P.K. Subramanyan, Electrochim. Acta to be published.Google Scholar
  82. 80.
    H. G. Van Bueren, Imperfections in Crystals, North-Holland, Amsterdam (1961).Google Scholar
  83. 81.
    A. R. Troiano, Trans. ASM. 47, 892 (1955).Google Scholar
  84. 82.
    J. A. Peterson, R. Gibala, and A. R. Troiano, J. Iron Steel Inst. 207, 86 (1969).Google Scholar
  85. 83.
    P. Cotterril, Prog. Met. Sci. 9, 205 (1961).CrossRefGoogle Scholar
  86. 84.
    A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials, John Wiley and Sons, New York (1970).Google Scholar
  87. 85.
    H. C. Rogers, Science 159, 1057 (1968).CrossRefGoogle Scholar
  88. 86.
    I. M. Bernstein, Mater. Sci. Eng. 6, 1 (1970).CrossRefGoogle Scholar
  89. 87.
    J. P. Hirsh and H. H. Johnson, Corrosion (Houston) 32, 3 (1976).Google Scholar
  90. 88.
    A. W. Thompson, Int. J. Hydrogen Energy 2, 299 (1977).CrossRefGoogle Scholar
  91. 89.
    H. Benneck, H. Schenck, and H. Muller, Stahl Eisen 55, 321 (1935).Google Scholar
  92. 90.
    A. A. Griffith, Philos. Trans. A221, 163 (1920–1921); Proc. Int. Congr. Appl. Mech. Delft, 55 (1924).Google Scholar
  93. 91.
    I. N. Sneddon, Proc. R. Soc. 187, 229 (1945).Google Scholar
  94. 92.
    F. de Kazinczy, J. Iron Steel Inst. 177, 85 (1954).Google Scholar
  95. 93.
    F. Garafalo, Y. T. Chotu, and V. Ambegaokar, Acta. Metall. 8, 504 (1960).CrossRefGoogle Scholar
  96. 94.
    B. A. Bilby and J. Hewitt, Acta Metall. 10, 587 (1962).CrossRefGoogle Scholar
  97. 95.
    F. Kamel and A. G. Quarrel, J. Iron Steel Inst. 187, 1002 (1965); K. Farrel, J. Iron Steel Inst. 188, 457 (1965).Google Scholar
  98. 96.
    J. O’M. Bockris, M. A. Gershaw, and M. A. Fullenwider, Electrochem. Acta 15, 47 (1970).Google Scholar
  99. 97.
    J. O’M. Bockris and P. K. Subramanyan, J. Electrochem. Soc. 118, 1114 (1971).CrossRefGoogle Scholar
  100. 98.
    E. Gileadi, M. A. Fullenwider, and J. O’M. Bockris, J. Electrochem. Soc. 113, 926 (1966).CrossRefGoogle Scholar
  101. 99.
    N. J. Petch and P. Stables, Nature (London) 169, 842 (1952).CrossRefGoogle Scholar
  102. 100.
    N. J. Petch, Philos. Mag. 1, 186 (1956); 1, 331 (1956); 3, 1089 (1958).Google Scholar
  103. 101.
    E. Orowan, Nature (London) 154, 341 (1944).CrossRefGoogle Scholar
  104. 102.
    G. G. Hancock and H. H. Johnson, Trans. A.I.M.E. 236, 513 (1966).Google Scholar
  105. 103.
    M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York (1967).Google Scholar
  106. 104.
    Y. A. Marichev and I. L. Rosenfeld, Corrosion (Houston) 32, 423 (1976).CrossRefGoogle Scholar
  107. 105.
    J. H. N. Van Vucht, F. A. Kujpers, and H. C. A. M. Burming, Philips Res. Rep. 25, 133 (1970).Google Scholar
  108. 106.
    A. Biris, R. V. Bucur, P. Ghete, E. Indrea, and D. Lupu, J. Less Common Met. 49, 477 (1976).CrossRefGoogle Scholar
  109. 107.
    O. Boser, J. Less Common Met. 46, 9 (1976).CrossRefGoogle Scholar
  110. 108.
    H. H. Van Mal, K. H. J. Buschow, and A. R. Meidema, J. Less Common Met. 49, 473 (1976).CrossRefGoogle Scholar
  111. 109.
    A. R. Meidema, K. H. J. Buschow, and H. H. Van Mal, J. Less Common Met. 49, 463 (1976).CrossRefGoogle Scholar
  112. 110.
    W. Beck, J. O’M. Bockris, M. A. Genshaw, and P. K. Subramanyan, Met. Trans. 2, 883 (1971).CrossRefGoogle Scholar
  113. 111.
    P. K. Subramanyan, Ph.D. thesis, Hydrogen in ferrous metals and alloys, University of Pennsylvania, Philadelphia, 1970.Google Scholar
  114. 112.
    R. H. Wiswall, Jr. and J. J. Reilly, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, San Diego, September, 1972, American Chemical Society, Washington, D.C. (1973), p. 1342.Google Scholar
  115. 113.
    K. C. Hoffman, J. J. Reilly, F. J. Solzano, C. H. Waide, R. H. Wiswall, and W. E. Winsche, Int. J. Hydrogen Energy, 1, 133 (1976).CrossRefGoogle Scholar
  116. 114.
    M. A. Pick and H. Wenzl, Int. J. Hydrogen Energy 1, 413 (1976).CrossRefGoogle Scholar
  117. 115.
    A. H. Beaufrere, F. J. Salzano, R. J. Isler, and W. S. Yu, Int. J Hydrogen Energy 1, 307 (1976).CrossRefGoogle Scholar
  118. 116.
    G. Bronoel, J. Sarradin, M. Bonnemay, A. Pecheron, J. C. Achard, and L. Schlapbach, Int. J. Hydrogen Energy 1, 251 (1976).CrossRefGoogle Scholar
  119. 117.
    W. C. Gough, in The Chemistry of Fusion Technology,D. M. Gruen, ed., Plenum Press, New York (1972), Chap. 1.Google Scholar
  120. 118.
    J. D. Lee, in The Chemistry of Fusion Technology, D. M. Gruen, ed., Plenum Press, New York (1972), Chap. 2. T. Kammash, Fusion Reactor Physics, Ann Arbor Science Publishing Inc., Ann Arbor, Michigan (1976). B. L. Doyle and F. L. Vook, Thin Solid Films 63, 277 (1979).Google Scholar
  121. 119.
    M. R. Piggot and A. C. Siarkowski, J. Iron Steel Inst. 901 (December 1972).Google Scholar
  122. 120.
    N. V. Parthasaradhy, Met. Finish. 36 (August 1974).Google Scholar
  123. 121.
    J. P. Nityanandan, H. V. K. Udarfoa, H. N. Venkoba Rao, Y. Mahadevan, and K. R. Ramakrishnan, J. Met. Finish. 194 (September 1974).Google Scholar
  124. 122.
    P. C. T. DeBoer, W. J. McLean, and H. S. Homan, Int. J. Hydrogen Energy 1, 153 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • P. K. Subramanyan
    • 1
  1. 1.Gould LaboratoriesGould, Inc.ClevelandUSA

Personalised recommendations