Deterministic Chaos: Sensitivity, Mixing, and Periodic Points

  • Heinz-Otto Peitgen
  • Hartmut Jürgens
  • Dietmar Saupe

Abstract

Mathematical research in chaos can be traced back at least to 1890, when Henri Poincaré studied the stability of the solar system. He asked if the planets would continue on indefinitely in roughly their present orbits, or might one of them wander off into eternal darkness or crash into the sun. He did not find an answer to his question, but he did create a new analytical method, the geometry of dynamics. Today his ideas have grown into the subject called topology, which is the geometry of continuous deformation. Poincaré made the first discovery of chaos in the orbital motion of three bodies which mutually exert gravitational forces on each other.

Keywords

Chaotic System Periodic Point Unit Interval Shift Operator Sensitive Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Heinz-Otto Peitgen
    • 1
    • 2
  • Hartmut Jürgens
    • 3
  • Dietmar Saupe
    • 4
  1. 1.CeVis and MeVisUniversität BremenBremenGermany
  2. 2.Department of MathematicsFlorida Atlantic UniversityBoca RatonUSA
  3. 3.CeVis and MeVisUniversität BremenBremenGermany
  4. 4.Department of Computer ScienceUniversität FreiburgFreiburgGermany

Personalised recommendations