Cracked Indents—Friend or Foe?

Their Use in Toughness and Brittleness Characterization
  • I. J. McColm
Chapter

Abstract

Inevitably ceramics will become more widely used as they are made tougher through the application of developments in the following areas:
  1. 1.

    Achievement of zero porosity and maximum densities from the use of better characterized starting powders and improved sintering techniques.(1)

     
  2. 2.
    Utilization of the transformation toughening process available via zirconia. Such processes may involve any or all of the following four mechanisms:
    1. a

      Microcrack generation around transformed particles.

       
    2. b

      Stress-induced compression zones.

       
    3. c

      Compressive surface layer formation.

       
    4. d

      Agglomerate toughening.

      Discussion of these phenomena can be found in several sources.(2 3)

       
     
  3. 3.

    Development of duplex structure ceramics.

     
  4. 4.

    Manufacture of composites containing large volumes of fibrous or whisker ceramic materials.

     

Keywords

Residual Stress Fracture Toughness Stress Intensity Factor Crack Length Critical Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. J. McColm and N. J. Clark, Forming, Shaping and Working of High Performance Ceramics, Blackie, Glasgow (1988).Google Scholar
  2. 2.
    R. Stevens, An Introduction to Zirconia, Magnesium Elektron Ltd., Twickenham (1988).Google Scholar
  3. 3.
    I. J. McColm, Ceramic Science for Materials Technologists, Blackie, Glasgow (1983).Google Scholar
  4. 4.
    S. Palmqvist, Jernkontorets Annalen 167, 208 (1963) and 141, 300 (1957).Google Scholar
  5. 5.
    B. R. Lawn and M. V. Swain, J. Mater. Sci. 10, 113 (1975) and 10, 1049 (1975).Google Scholar
  6. 6.
    D. B. Marshall, B. R. Lawn, and A. G. Evans, J. Amer. Ceram. Soc. 65, 561 (1982).CrossRefGoogle Scholar
  7. 7.
    R. Mouginot and D. Mangis, J. Mater. Sci. 20, 4354 (1985).CrossRefGoogle Scholar
  8. 8.
    A. G. Evans and E. A. Charles, J. Amer. Ceram. Soc. 59, 371 (1976).CrossRefGoogle Scholar
  9. 9.
    S. S. Chiang, D. B. Marshall, and A. G. Evans, J. Appl. Phys. 53, 298 (1982).CrossRefGoogle Scholar
  10. 10.
    B. R. Lawn, A. G. Evans, and D. B. Marshall, J. Amer. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
  11. 11.
    A. G. Evans, ASTM-STP 678, (1979) p. 112.Google Scholar
  12. 12.
    K. Niihara, R. Morena, and D. P. H. Hasselman, in Fracture Mechanics of Solids V, R. C. Bradt, ed., Symp. Penn State College (1981), p. 97.Google Scholar
  13. 13.
    G. R. Antis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Amer. Ceram. Soc. 64, 539 (1981).CrossRefGoogle Scholar
  14. 14.
    D. G. Bhat, J. Amer. Ceram. Soc. 64, C-165 (1981).Google Scholar
  15. 15.
    J. L. Henshall and C. A. Brookes, J. Mater. Sci. Letters 4, 783 (1986).CrossRefGoogle Scholar
  16. 16.
    D. K. Shetty and I. G. Wright, J. Mater. Sci. Letters 5, 365 (1986).CrossRefGoogle Scholar
  17. 17.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Amer. Ceram. Soc. 65, C-116 (1982).Google Scholar
  18. 18.
    P. Mirazano and J. S. Moya, Ceram. Int. 10, 147 (1984).CrossRefGoogle Scholar
  19. 19.
    C. T. Peters, J. Mater. Sci. 14, 1619 (1979).CrossRefGoogle Scholar
  20. 20.
    M. T. Laugier, J. Mater. Sci. Letters 6, 897 (1987).CrossRefGoogle Scholar
  21. 21.
    J. T. Hagan, J. Mater. Sci. 14, 2875 (1979).Google Scholar
  22. 22.
    D. B. Marshall, T. Noma, and A. G. Evans, J. Amer. Ceram. Soc. 65, C-175 (1982).Google Scholar
  23. 23.
    E. Breval and N. H. MacMillan, J. Mater. Sci. Letters 4, 741 (1985).CrossRefGoogle Scholar
  24. 24.
    P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, J. Amer. Ceram. Soc. 64, 539 (1981).CrossRefGoogle Scholar
  25. 25.
    B. Mussler, M. V. Swain, and N. Clausson, J. Amer. Ceram. Soc. 65, 566 (1982).CrossRefGoogle Scholar
  26. 26.
    R. W. Rice, S. W. Freiman, and P. F. Becher, J. Amer. Ceram. Soc. 64, 345 (1981).CrossRefGoogle Scholar
  27. 27.
    S. N. Bandyopadhyay and H. K. DeSarker, Eng. Fract. Mech. 14, 373 (1981).CrossRefGoogle Scholar
  28. 28.
    R. F. Cook, B. R. Lawn, and C. J. Fairbanks, J. Amer. Ceram. Soc. 68, 604 (1985).CrossRefGoogle Scholar
  29. 29.
    R. Warren, Acta. Met. 26, 1759 (1978).CrossRefGoogle Scholar
  30. 30.
    J. L. Routbort and Hj. Matske, J. Mater. Sci. 18, 1491 (1983).CrossRefGoogle Scholar
  31. 31.
    Hj. Matske, T. Inoue, and R. Ward, J. Nucl. Mater. 91, 205 (1980).CrossRefGoogle Scholar
  32. 32.
    S. M. Weiderhorn and B. R. Lawn, J. Mater. Sci. 18, 766 (1983).CrossRefGoogle Scholar
  33. 33.
    M. E. Gulden, J. Amer. Ceram. Soc. 64, C-59 (1981).Google Scholar
  34. 34.
    M. T. Sykes, R. O. Scattergood, and C. R. L. Routbort, Composites 18, 153 (1987).CrossRefGoogle Scholar
  35. 35.
    J. T. Hagan, J. Mater. Sci. 15, 1417 (1980).CrossRefGoogle Scholar
  36. 36.
    J. L. Henshall and C. A. Brookes, J. Mater. Sci. Letters 4, 783 (1985).CrossRefGoogle Scholar
  37. 37.
    A. Krell, J. Woltersdorf, E. Pippel, and D. Schulze, Phil. Mag. A51, 765 (1985).CrossRefGoogle Scholar
  38. 38.
    D. B. Marshall, J. Amer. Ceram. Soc. 67, C-259 (1984).Google Scholar
  39. 39.
    S. S. Chiang, D. B. Marshall, and A. G. Evans, Mater. Sci. Res. 14 (Surf. Interfaces Ceram. Ceram.-Met. Systs.), 603 (1981).Google Scholar
  40. 40.
    D. H. Roach and A. R. Cooper, J. Amer. Ceram. Soc. 68, 632 (1985).CrossRefGoogle Scholar
  41. 41.
    A. Dollar and P. F. Steif, Int. J. Solid Struct. 24, 789 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • I. J. McColm
    • 1
  1. 1.University of BradfordBradfordEngland

Personalised recommendations