Metabolism in Plant Peroxisomes

  • Anthony H. C. Huang
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 16)

Abstract

Peroxisomes (microbodies) are present in a great variety of plant, animal and microbial cells as spherical or oblate organelles of size ranging from 0.2 to 1.5 µm in diameter. The organelle contains a dense proteinaceous matrix surrounded by a single membrane, and occasionally a crystalline or non-crystalline proteinaceous core of varying size is present in the matrix. In addition to their morphology, the peroxisomes are characterized biochemically by their enzymatic content of catalase and H2O2-producing oxidases. The organelles were first observed in plant cells by electron microscopy in the mid-1960s1–3 and biochemical studies were started independently in the mid-late 1960s.4 5 Although the plant peroxisomes were erroneously identified as other organelles, including spherosomes, microsomes, and lysosomes, they are now recognized as distinct organelles. Whereas “microbody” is a morphological term for the organelle, “peroxisome” is a biochemical term to describe the organelle being involved in the metabolism of hydrogen peroxide.6 No true peroxidase other than the peroxidative activity of catalase has been found in the organelles.

Keywords

Glyoxylate Cycle Euglena Gracilis Isocitrate Lyase Urate Oxidase Glycolate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorton, R. M., K. V. Thimann. 1964. On a crystal-containing body in cells of the oat coleoptile. J. Cell Biol. 20: 345–350.CrossRefGoogle Scholar
  2. 2.
    Mollenhauer, H. H., J. D. Morre, A. G. Kelly. 1966. The widespread occurrence of plant cytosomes resembling animal microbodies. Protoplasma 62: 44–52.CrossRefGoogle Scholar
  3. 3.
    Frederick, S. E., E. H. Newcomb, E. L. Vigil, W. P. Wergin. 1968. Fine-structural characterization of plant microbodies. Planta 8: 229–252.CrossRefGoogle Scholar
  4. 4.
    Breidenbach, R. W., H. Beevers. 1967. Association of glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem. Biophys. Res. Comm. 27: 462–469.PubMedCrossRefGoogle Scholar
  5. 5.
    Tolbert, N. E., A. Oeser, T. Kisaki, R. H. Hageman, R. K. Yamazaki. 1968. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243: 5179–5184.PubMedGoogle Scholar
  6. 6.
    de Duve, C., P. Baudhuin. 1966. Peroxisomes (micro-bodies and related particles). Physiol. Rev. 46: 323–357.PubMedGoogle Scholar
  7. 7.
    Beevers, H., R. W. Breidenbach. 1974. Glyoxysomes. Methods Enzymol. 31A: 565–571.Google Scholar
  8. 8.
    Tolbert, N. E. 1974. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 31A: 734–746.CrossRefGoogle Scholar
  9. 9.
    Vigil, E. L., G. Wanner, R. R. Theimer. 1979. Isolation of plant microbodies. In Plant Organelles (E. Reid, ed.). Ellis Horwood limited, Chichester, pp. 89–102.Google Scholar
  10. 10.
    Huang, A. H. C. 1981. Isolation and subfractionation of glyoxysomes. Methods Enzymol. 72: 783–790.PubMedCrossRefGoogle Scholar
  11. 11.
    de Duve, C. 1969. Evolution of the peroxisomes. Ann. N.Y. Acad. Sci. 168: 369–381.PubMedCrossRefGoogle Scholar
  12. 12.
    Tolbert, N. E. 1980. Microbodies — peroxisomes and glyoxysomes. hi The Biochemistry of Plants (P. K. Stumpf, E. E. Conn, eds.). Academic Press, New York. Vol. 1, Chapter 9, pp. 359–388.Google Scholar
  13. 13.
    Cooper, T. G., R. P. Lawther. 1973. Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway. Proc. Natl. Acad. Sci. Usa. 70: 2340–2344.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerhardt, B. 1978. Microbodies/peroxisomen pflanzlicher Zellen. Cell Biology Monographs Volume 5. Wien: Springer. 283 pp.CrossRefGoogle Scholar
  15. 15.
    Huang, A. H. C., H. beevers. 1971. Isolation of microbodies from plant tissues. Plant Physiol. 48: 637–641.PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper, T. C., H. Beevers. 1969. β-oxidation in glyoxysomes from castor bean endosperm. J. Biol. Chem. 244: 3514–3520.PubMedGoogle Scholar
  17. 17.
    Hutton, D., P. K. Stumpf. 1969. Characterization of the oxidation systems from maturing and germinating castor bean seeds. Plant Physiol. 44: 508–516.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang, A. H. C. 1975. Comparative studies on glyoxysomes from different fatty seedlings. Plant Physiol. 55: 870–874.PubMedCrossRefGoogle Scholar
  19. 19.
    Beevers, H. 1969. Glyoxysomes of castor bean endosperm and their relation to gluconeogenesis. Ann. N. Y. Acad. Sci. 168: 313–324.PubMedCrossRefGoogle Scholar
  20. 20.
    Ory, R. L. 1969. Acid lipase of the castor bean. Lipids. 4: 177–185.CrossRefGoogle Scholar
  21. 21.
    Muto, S., H. Beevers. 1974. Lipase activities in castor bean endosperm during germination. Plant Physiol. 54: 23–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, A. H. C., R. A. Moreau. 1978. Lipases in the storage tissues of peanut and other oil seeds during germination. Planta 141: 111–116.CrossRefGoogle Scholar
  23. 23.
    Cooper, T. G. 1971. The activation of fatty acids in castor bean endosperm. J. Biol. Chem. 246: 3451–3455.PubMedGoogle Scholar
  24. 24.
    Mettler, J. J., H. Beevers. 1980. Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle. Plant Physiol. 66: 555–560.PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper, T. C., H. Beevers. 1969. Mitochondria and glyoxysomes from castor bean endosperm. J. Biol. Chem. 246: 3451–3455.Google Scholar
  26. 26.
    Hanson, J. B., D. Day. 1980. Plant mitochondria. In The Biochemistry of Plants (P. K. Stumpf, E. E. Conn, eds.). Vol. 1, Academic Press, New York, pp. 315–358.Google Scholar
  27. 27.
    Huang, A. H. C., H. Beevers. 1973. Localization of enzymes within microbodies. J. Cell Biol. 58: 379–389.PubMedCrossRefGoogle Scholar
  28. 28.
    Bieglmayer, C., J. Graf, H. Ruis. 1973. Membranes of glyoxysomes from castor bean endosperm. Enzymes bound to purified membrane preparations. Eur. J. Biochem. 37: 553–562.PubMedCrossRefGoogle Scholar
  29. 29.
    Beevers, H. 1979. Microbodies in higher plants. Annu. Rev. Plant Physiol. 30: 159–193.CrossRefGoogle Scholar
  30. 30.
    Halliway, B. 1974. Oxidation of formate by peroxisomes and mitochondria from spinach leaves. Biochem. J. 138: 77–85.Google Scholar
  31. 31.
    Richardson, K. E., N. E. Tolbert. 1961. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase. J. Biol. Chem. 231: 1280–1284.Google Scholar
  32. 32.
    Zelitch, I. 1972. The photooxidation of glyoxylate by envelop-free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biophys. 150: 698–707.PubMedCrossRefGoogle Scholar
  33. 33.
    Frederick, S. E., E. H. Newcomb. 1971. Structure and distribution of microbodies in leaves of grasses with and without CO2 photorespiration. Planta 96: 152–176.CrossRefGoogle Scholar
  34. 34.
    Osmond, C. B., J. A. M. Holtum. 1980. Crassulacean acid metabolism. In The Biochemistry of Plants (P. K. Stumpf, E. E. Conn, eds.). Vol. 8, Academic Press, New York. pp. 283–328.Google Scholar
  35. 35.
    Edwards, G. E., S. C. Huber. 1981. The C4 pathway. In The Biochemistry of Plants (P. K. Stumpf, E. E. Conn, eds.). Vol. 8, Academic Press, New York, pp. 238–281.Google Scholar
  36. 36.
    Huang, A. H. C., H. Beevers. 1972. Microbody enzymes and carboxylases in sequential extracts from C4 and C3 leaves. Plant Physiol. 50: 242–248.PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas, R. J., L. E. Schrader. 1981. Ureide metabolism in higher plants. Phytochemistry 20: 361–371.CrossRefGoogle Scholar
  38. 38.
    Rawsthorne, S., F. R. Minchin, R. J. Summerfield, C. Cookson, J. Coombs. 1980. Carbon and nitrogen metabolism in legume root nodules. Phytochemistry 19: 341–355.CrossRefGoogle Scholar
  39. 39.
    Tolbert, N. E. 1981. Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50: 133–157.PubMedCrossRefGoogle Scholar
  40. 40.
    Theimer, R. R., H. Beevers. 1971. Uricase and allan-toinase in glyoxysomes. Plant Physiol. 47: 246–251.PubMedCrossRefGoogle Scholar
  41. 41.
    Newcomb, E. H., S. R. Tandon. 1981. Uninfected cells of soybean root nodules: ultrastructure suggests key role in ureide production. Science 212: 1394–1396.PubMedCrossRefGoogle Scholar
  42. 42.
    Hanks, J. F., N. E. Tolbert, K. R. Schubert. 1981. Localization of enzymes of ureide biosynthesis in peroxisomes and microsomes of nodules. Plant Physiol. 68: 65–69.PubMedCrossRefGoogle Scholar
  43. 43.
    Hanks, J. F., K. R. Schubert, N. E. Tolbert. 1981. Subcellular localization of allantoinase in soybean leaves. Plant Physiol. 67: 28S.Google Scholar
  44. 44.
    Susani, M., P. Zimniak, F. Fessi, H. Ruis. 1976. Localization of catalase A in vacuoles of Saccharo-myces cerevisiae: evidence for the vacuolar nature of isolated “yeast peroxisomes.” Hoppe-Seyler’s Z. Physiol. Chem. 357: 961–970.CrossRefGoogle Scholar
  45. 45.
    Armitt, S., C. F. Roberts, H. L. Romberg. 1970. The role of isocitrate lyase in Aspergillus nidulans. FEBS Letters 7: 231–234.PubMedCrossRefGoogle Scholar
  46. 46.
    Sjogren, R. E., A. H. Romano. 1967. Evidence for multiple forms of isocitrate lyase in Neurospora crassa. J. Bacteriol. 93: 1638–1643.PubMedGoogle Scholar
  47. 47.
    Silverberg, B. A. 1975. An ultrastructural and cyto-chemical characterization of microbodies in the green algae. Protoplasma 83: 269–295.PubMedCrossRefGoogle Scholar
  48. 48.
    Maxwell, D. P., V. N. Armentrout, L. B. Graves, Jr. 1977. Microbodies in plant pathogenic fungi. Annu. Rev. Phytopathol. 5: 119–134.CrossRefGoogle Scholar
  49. 49.
    Powell, M. J. 1978. Phylogenetic implications of the microbody-lipid globule complex in zoosporic fungi. Biosystems 10: 167–180.PubMedCrossRefGoogle Scholar
  50. 50.
    Mills, G. L., E. C. Cantino. 1975. The single micro-body in the zoospore of Blastocladiella emersonii is a “Symphyomicrobody”. Cell Differentiation 4: 35–44.CrossRefGoogle Scholar
  51. 51.
    Powell, M. J. 1976. Ultrastructure and isolation of glyoxysomes (microbodies) in zoospores of the fungus Entophylyctis sp. Protoplasma 89: 1–27.CrossRefGoogle Scholar
  52. 52.
    Armentrout, V. N., D. P. Maxwell. 1981. A glyoxysomal role for microbodies in germinating conidia of Botryodiplodia theobromae. Exper. Mycol. 5: In Press.Google Scholar
  53. 53.
    LeBeault, J. M., B. Roche, Z. Duvnjak, E. Azoulay. 1970. Alcool et aldehyde-deshydrogenases particulaires de Candida tropicalis cultive sur hydrocarbures. Biochim. Biophys. Acta. 220: 373–385.PubMedCrossRefGoogle Scholar
  54. 54.
    Walker, J. D., J. J. Cooney. 1973. Pathway of n-alkane oxidation in Cladosporium resinae. J. Bacteriol. 115: 635–639.PubMedGoogle Scholar
  55. 55.
    Lode, E. T., M. J. Coon. 1973. Role of rubredoxin in fatty acid and hydrocarbon hydroxylation reactions. In Iron-sulfur proteins (W. Lovenberg, ed.). Academic Press, New York. pp. 173–191.Google Scholar
  56. 56.
    Kawamoto, S., M. Ueda, C. Nozaki, M. Yamamura, A. Tanaka, S. Fukui. Localization of carnitine acetyltransferase in peroxisomes and in mitochondria of n-alkane-grown Candida tropicalis. FEBS Letters 96: 37–40.Google Scholar
  57. 57.
    Mishina, M., T. Kamiryo, S. Tashiro, S. Numa. 1978. Separation and characterization of two long-chain acyl-CoA synthetase from Candida lipolytica. Eur. J. Biochem. 82: 347–354.PubMedCrossRefGoogle Scholar
  58. 58.
    Yamada, T., H. Nawa, S. Kawamoto, A. Tanaka, S. Fukui. 1980. Subcellular localization of long-chain alcohol dehydrogenase and aldehyde-dehydrogenase in n-alkane-grown Candida tropicalis. Arch. Microbiol. 128: 145–151.PubMedCrossRefGoogle Scholar
  59. 59.
    Graves, L. B., Jr., W. M. Becker. 1974. Beta-oxidation in glyoxysomes from Euglena. Protozool. 21: 771–774.Google Scholar
  60. 60.
    Woodward, J., M. J. Merrett. 1975. Induction potential for glyoxylate cycle enzymes during the cell cycle of Euglena gracilis. Eur. J. Biochem. 55: 555–559.PubMedCrossRefGoogle Scholar
  61. 61.
    Kobr, M. J., F. Vanderhaeghe, G. Combepine. 1973. Particulate enzymes of the glyoxylate cycle in Neurospora crassa. Biochem. Biophys. Res. Comm. 37: 460–645.Google Scholar
  62. 62.
    Szabo, A., C. J. Avers. 1969. Some aspects of regulation of peroxisomes and mitochondria in yeast. Ann. N. Y. Acad. Sci. 168: 302–312.PubMedCrossRefGoogle Scholar
  63. 63.
    Sullivan, J. O., P. J. Casselton. 1972. The subcellular localization of glyoxylate cycle enzymes in Coprinus lagopus (sensu Buller). J. Gen. Microbiol. 75: 333–337.Google Scholar
  64. 64.
    Graves, L. B. Jr., V. N. Armentrout, D. P. Maxwell. 1976. Distribution of glyoxylate-cycle enzymes between microbodies and mitochondria in Aspergillus tamarii. Planta 132: 143–148.CrossRefGoogle Scholar
  65. 65.
    Graves, L. B. Jr., R. N. Trelease, A. Grill, W. M. Becker. 1972. Localization of glyoxylate cycle enzymes in glyoxysomes in Euglena. J. Protozool. 19: 527–532.PubMedGoogle Scholar
  66. 66.
    Gerhardt, B. 1971. Localization of microbodial enzymes in Polytomella caeca. Arch. Mikrobiol. 80: 205–218.PubMedCrossRefGoogle Scholar
  67. 67.
    Cooper, R. A., D. Lloyd. 1972. Subcellular fractionation of the colourless alga Polytomella caeca by differential and zonal centrifugation. J. Gen. Microbiol. 72: 59–70.Google Scholar
  68. 68.
    Tolbert, N. E. 1974. In Algal Physiology and Biochemistry (W. D. P. Stewart, eds.). Blackwell, Oxford, pp. 474–504.Google Scholar
  69. 69.
    Nelson, E. B., N. E. Tolbert. 1970. Glycolate dehydrogenase in green algae. Arch. Biochem. Biophys. 141: 102–110.PubMedCrossRefGoogle Scholar
  70. 70.
    Frederick, S. E., P. Gruber, N. E. Tolbert. 1973. The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants. An evolutionary survey. Plant Physiol. 52: 318–323.PubMedCrossRefGoogle Scholar
  71. 71.
    Stabeau, H. 1976. Microbodies from Spirogyra. Organelles of a filamentous algae similar to leaf peroxisomes. Plant Physiol. 58: 693–695.CrossRefGoogle Scholar
  72. 72.
    Codd, G. A., G. H. Schmid. 1972. Enzymic evidence for peroxisomes in a mutant of Chlorella vulgaris. Arch. Mikrobiol. 81: 264–272.PubMedCrossRefGoogle Scholar
  73. 73.
    Gruber, P. J., S. E. Frederick. 1977. Cytochemical localization of glycolate oxidase in microbodies of Klebsormidium. Planta 135: 45–49.CrossRefGoogle Scholar
  74. 74.
    Collins, N., M. J. Merrett. 1975. The localization of glycollate-pathway enzymes in Euglena. Biochem. J. 148: 321–328.PubMedGoogle Scholar
  75. 75.
    Collins, N., M. J. Merrett. 1975. Microbody marker-enzymes during transition from phototrophic to organotrophic growth in Euglena. Plant Physiol. 55: 1018–1022.PubMedCrossRefGoogle Scholar
  76. 76.
    Yokota, A., Y. Nakano, S. Kitaoka. 1978. Different effects of some growing condition on glycolate dehydrogenase in mitochondria and microbodies in Euglena gracilis. Agric. Biol. Chem. 42: 115–120.Google Scholar
  77. 77.
    Yokota, A., Y. Nakano, S. Kitaoka. 1978. Metabolism of glycolate in mitochondria of Euglena gracilis. Agric. Biol. Chem. 42: 121–129.CrossRefGoogle Scholar
  78. 78.
    Graves, L. B. Jr., R. N. Trelease, A. Grill, W. M. Becker. 1972. Localization of glyoxylate cycle enzymes in glyoxysomes in Euglena. J. Protozool. 19: 527–532.PubMedGoogle Scholar
  79. 79.
    Paul, J. S., C. W. Sullivan, B. E. Volcani. 1975. Photorespiration in diatoms. Mitochondrial glycolate dehydrogenase in Cylindrotheca fusiformis and Nitzschia alba. Arch. Biochem. Biophys. 169: 152–159.PubMedCrossRefGoogle Scholar
  80. 80.
    Stabenau, H. 1974. Verteilung von Microbody-Enzyme aus Chlamydomonas in Dichtegradienten. Planta 118: 35–42.CrossRefGoogle Scholar
  81. 81.
    Colby, J., H. Dalton, R. Whittenbury. 1979. Biological and biochemical aspects of microbial growth on C1 compounds. Annu. Rev. Microbiol 33: 481–517.PubMedCrossRefGoogle Scholar
  82. 82.
    Sahm, H., F. Wagner. 1973. Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii. Eur. J. Biochem. 36: 250–256.PubMedCrossRefGoogle Scholar
  83. 83.
    Roggenkamp, R., H. Sahm, W. Hinkelmann, F. Wagner. 1975. Alcohol oxidase and catalase in peroxisomes of methanol-grown Candida boidinii. Eur. J. Biochem. 59: 231–236.PubMedCrossRefGoogle Scholar
  84. 84.
    Veenhuis, M., I. Keizer, W. Harder. 1979. Characterization of peroxisomes in glucose-grown Hansenula polymorpha and their development after the transfer of cells into methanol-containing media. Arch. Microbiol 120: 167–175.CrossRefGoogle Scholar
  85. 85.
    Fukui, S., S. Kawamoto, S. Yasuhara, A. Tanaka. 1975. Microbody of methanol-grown yeasts. Localization of catalase and flavin-dependent alcohol oxidase in the isolated microbody. Eur. J. Biochem. 59: 561–566.PubMedCrossRefGoogle Scholar
  86. 86.
    Veenhuis, M., J. P. Van Dijken, W. Harder. 1976. Cytochemical studies on the localization of methanol oxidase and other oxidases in peroxisomes of methanol-grown Hansenula polymorpha. Arch. Microbiol. 111: 123–135.PubMedCrossRefGoogle Scholar
  87. 87.
    Tanaka, A., S. Yasuhara, S. Kawamoto, S. Fukui, M. Osumi. 1976. Development of microbodies in the yeast Kloeckera growing on methanol. J. Bacteriol. 126: 919–927.PubMedGoogle Scholar
  88. 88.
    Bateman, D. F., S. V. Beer. 1965. Simultaneous pro duction and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55: 204–211.PubMedGoogle Scholar
  89. 89.
    Maxwell, D. P., D. F. Bateman. 1968. Oxalic acid biosynthesis by Sclerotium rolfsii. Phytopathology 58: 1635–1642.Google Scholar
  90. 90.
    Armentrout, V. N., L. B. Graves, Jr., D. P. Maxwell. 1978. Localization of enzymes of oxalate biosynthesis in microbodies of Sclerotium rolfsii. Phytopathology 68: 1597–1599.CrossRefGoogle Scholar
  91. 91.
    Chang, C. C., A. H. C. Huang. 1981. Metabolism of glycolate in isolated spinach leaf peroxisomes. Kinetics of glyoxylate, oxalate, C02 and glycine formation. Plant Physiol. 67: 1003–1006.PubMedCrossRefGoogle Scholar
  92. 92.
    van Dijken, J. P., P. Bos. 1981. Utilization of amines by yeast. Arch. Microbiol. 128: 320–324.PubMedCrossRefGoogle Scholar
  93. 93.
    Yamada, H., O. Adachi, K. Ogata. 1965. Amine oxidases of microorganisms. Part Iii. Properties of amine oxidase of Aspergillus niger. Agric. Biol. Chem. 29: 864–869.CrossRefGoogle Scholar
  94. 94.
    Zwart, K., M. Veenhuis, J. P. Dijken, W. Harder. 1980. Development of amine oxidase-containing peroxisomes in yeast during growth on glucose in the presence of methylamine as the sole source of nitrogen. Arch. Microbiol. 126: 117–126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Anthony H. C. Huang
    • 1
  1. 1.Biology DepartmentUniversity of South CarolinaColumbiaUSA

Personalised recommendations