Patterns of Energy Output During Reproduction in Carnivores

  • Olav T. Oftedal
  • John L. Gittleman

Abstract

Reproduction is energetically expensive (Harvey 1986; Loudon and Racey 1987; Gittleman and Thompson 1988). The pregnant female requires energy and nutrients for the synthesis of fetal, placental, uterine, and mammary tissues. Lactation involves an even greater drain of nutrients and energy. During reproduction energy expenditure may also rise as a consequence of increases in metabolic rate and activity level (Thompson and Nicoll 1986). To support the energetic costs of late pregnancy and lactation, maternal food intake must increase and/or the energy accumulated prior to reproduction or during early pregnancy must be mobilized (Loveridge 1986; Gittleman and Thompson 1988). Thus female reproduction involves substantial commitment of nutritional resources: for example, the energy required by a female ungulate to rear a single offspring from conception to weaning is similar to maintenance energy needs for approximately 100–150 days (Oftedal 1985).

Keywords

Energy Output Litter Size Milk Yield Giant Panda American Mink 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolph, E. F., and Heggeness, F. W. 1971. Age changes in body water and fat in fetal and infant animals. Growth 35:55–63.Google Scholar
  2. Agricultural Research Council. 1980. The Nutrient Requirements of Ruminant Livestock. Farnham Royal, Eng.: Commonwealth Agricultural Bureaux.Google Scholar
  3. Calder, W. A. III. 1984. Size, Function, and Life History. Cambridge: Harvard Univ. Press.Google Scholar
  4. Dierenfeld, E. S., Hintz, H. F., Robertson, J. B., Van Soest, P. J., and Oftedal, O. T. 1982. Utilization of bamboo by the giant panda. J. Nutr. 112:636–641.Google Scholar
  5. Eisenberg, J. F. 1981. The Mammalian Radiations. Chicago: Univ. Chicago Press.Google Scholar
  6. Ewer, R. F. 1973. The Carnivores. Ithaca, N.Y.: Cornell Univ. Press.Google Scholar
  7. Gittleman, J. L. 1985. Functions of communal care in mammals. In: P. J. Greenwood, P. H. Harvey & M. Slatkin, eds. Evolution: Essays in honor of John Maynard Smith, pp. 187–205. Cambridge: Cambridge Univ. Press.Google Scholar
  8. Gittleman, J. L. 1986a. Carnivore brain size, behavioral ecology, and phylogeny. J. Mamm. 67:23–36.CrossRefGoogle Scholar
  9. Gittleman, J. L. 1986b. Carnivore life history patterns: Allometric, ecological and phylogenetic associations. Amer. Nat. 127:744–771.CrossRefGoogle Scholar
  10. Gittleman, J. L. 1988. The behavioral energetics of lactation in a herbivorous carnivore, the red panda (Ailurus fulgens). Ethology. In press.Google Scholar
  11. Gittleman, J. L., and Oftedal, O. T. 1987. Comparative growth and lactation energetics in carnivores. Symp. Zool. Soc. London 57:41–77.Google Scholar
  12. Gittleman, J. L., and Thompson, S. D. 1988. Energy allocation in mammalian reproduction. Amer. Zool. 28:863–875.Google Scholar
  13. Harvey, P. H. 1986. Energetic costs of reproduction. Nature 321:648–649.CrossRefGoogle Scholar
  14. Hanwell, A., and Peaker, M. 1977. Physiological effects of lactation on the mother. Symp. Zool. Soc. London. 41:297–312.Google Scholar
  15. Heidt, G. A. 1970. The least weasel Mustela nivalis Linnaeus. Developmental biology in comparison with other North American Mustela. Publications of the Museum, Michigan State Univ., Biological Series no. 4:227-282.Google Scholar
  16. Heidt, G. A., Petersen, M. K., and Kirkland, G. L. 1968. Mating behavior and development of weasels (Mustela nivalis) in captivity. J. Mamm. 49:413–419.CrossRefGoogle Scholar
  17. Hemmer, H. 1976. Gestation period and postnatal development in felids. World’s Cats 3:143–164.Google Scholar
  18. Hudson R. J., and Christopherson, R. J. 1985. Maintenance metabolism. In: R. J. Hudson & R. G. White, eds. The Bioenergetics of Wild Herbivores, pp. 121–142. Boca Raton, Fla.: CRC Press.Google Scholar
  19. Kleiber, M. 1975. The Fire of Life: An Introduction to Animal Energetics (rev. ed.) New York: John Wiley.Google Scholar
  20. Kleiman, D. G., and Brady, C. A. 1978. Coyote behavior in the context of recent canid research: Problems and perspectives. In: M. Bekoff, ed. Coyotes, pp. 163–188. New York: Academic Press.Google Scholar
  21. Kunz, T. H., and Nagy, K. N. 1987. Methods of energy budget analysis. In: T. H. Kunz, ed. Ecological and Behavioral Methods for the Study of Bats. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  22. Lack, D. 1954. The Natural Regulation of Animal Numbers. Oxford: Clarendon Press.Google Scholar
  23. Linzell, J. L. 1972. Milk yield, energy loss in milk, and mammary gland weight in different species. Dairy Sci. Abstr. 34:351–360.Google Scholar
  24. Loudon, A., and Racey, P. A., eds. 1987. The Reproductive Energetics of Mammals. Symposia of the Zoological Society of London no. 57. Oxford: Oxford Univ. Press.Google Scholar
  25. Loveridge, G. G. 1986. Bodyweight changes and energy intake of cats during gestation and lactation. Anim. Technol. 37:7–15.Google Scholar
  26. MacDonald, M. L., Rogers, Q. R., and Morris, J. G. 1984. Nutrition of the domestic cat, a mammalian carnivore. Ann. Rev. Nutr. 4:521–562.CrossRefGoogle Scholar
  27. Malcolm, J. R., and Marten, K. 1982. Natural selection and the communal rearing of pups in African wild dogs (Lycaon pictus). Behav. Ecol. Sociobiol. 10:1–13.CrossRefGoogle Scholar
  28. Martin, R. D. 1984. Scaling effects and adaptive strategies. Symp. Zool. Soc. Lond. 51:87–117.Google Scholar
  29. Mattingley, D. K., and McClure, P. A. 1982. Energetics of reproduction in large-littered cotton rats (Sigmodon hispidus). Ecology 63:183–195.CrossRefGoogle Scholar
  30. Maynard, L. A., Loosli, J. K., Hintz, H. F., and Warner, R. G. 1979. Animal Nutrition (7th ed.) New York: McGraw-Hill.Google Scholar
  31. Millar, J. S. 1979. Energetics of lactation in Peromyscus maniculatus. Canadian J. Zool. 57:1015–1019.CrossRefGoogle Scholar
  32. Mundt, von, H.-C., Thomee, A., and Meyer, H. 1981. Zur Energie-und Eiweissversorgung von Säugwelpen über die Muttermilch. Kleintier Praxis 26:353–360.Google Scholar
  33. National Research Council. 1982. Nutrient Requirements of Mink and Foxes. Washington, D.C.: National Academy of Sciences.Google Scholar
  34. National Research Council. 1985. Nutrient Requirements of Dogs. Washington, D.C.: National Academy of Sciences.Google Scholar
  35. National Research Council. 1986. Nutrient Requirements of Cats. Washington, D.C.: National Academy of Sciences.Google Scholar
  36. Oftedal, O. T. 1981. Milk, protein and energy intakes of suckling mammalian young: A comparative study. Ph.D. dissert., Cornell Univ., Ithaca, N.Y.Google Scholar
  37. Oftedal, O. T. 1984a. Body size and reproductive strategy as correlates of milk energy yield in lactating mammals. Acta Zoologica Venn. 171:183–186.Google Scholar
  38. Oftedal, O. T. 1984b. Milk composition, milk yield and energy output at peak lactation: A comparative review. Symp. Zool. Soc. Lond. 51:33–85.Google Scholar
  39. Oftedal, O. T. 1985. Pregnancy and lactation. In: R. J. Hudson & R. G. White, eds. The Bioenergetics of Wild Herbivores, pp. 215–238. Boca Raton, Fla: CRC Press.Google Scholar
  40. Oftedal, O. T. 1988. Body composition of neonatal black bears. Unpublished data.Google Scholar
  41. Oftedal, O. T., Boness, D. J., and Tedman, R. A. 1987a The behavior, physiology and anatomy of lactation in the Pinnipedia. Current Mamm. 1:175–245.Google Scholar
  42. Oftedal, O. T., Iverson, S. J., and Bonness, D. J. 1987b. Milk and energy intake of suckling California sea lion (Zalophus californicus) pups in relation to sex, growth, and predicted maintenance requirements. Physiol. Zool. 60:560–575.Google Scholar
  43. Ramsay, M. A., and Dunbrack, R. L. 1986. Physiological constraints on life history phenomena: The example of small bear cubs at birth. Amer. Nat. 127:735–743.CrossRefGoogle Scholar
  44. Rattray, P. V., Garrett, W. N., East, N. E., and Hinman, N. 1974 Growth, development and composition of the ovine conceptus and mammary gland during pregnancy. J. Anim. Sci. 38:613–626.Google Scholar
  45. Robbins, C. T., and Moen, A. N. 1975. Uterine composition and growth in pregnant white-tailed deer. J. Wildl. Mgmt. 39:684–691.CrossRefGoogle Scholar
  46. Sadleir, R. M. F. S. 1969. The Ecology of Reproduction in Wild and Domestic Mammals. London: Methuen.CrossRefGoogle Scholar
  47. Schaller, G. B., Jinchu, H., Wenshi, P., and Jing, Z. 1985. The Giant Pandas of Wolong. Chicago: Univ. Chicago Press.Google Scholar
  48. Thomas, K. 1911. Über die Zusammensetzung von Hund und Katze während der ersten Verdoppelungsperioden des Geburtgewuchtes. Archiv für Anatomie und Physiologie, Physiologischer Abteilung 1:9–38.Google Scholar
  49. Thompson, S.D., and Nicoll, M. E. 1986. Basal metabolic rate and energetics of reproduction in therian mammals. Nature 321:690–693.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Olav T. Oftedal
  • John L. Gittleman

There are no affiliations available

Personalised recommendations