Abstract

The pathogenesis of murine mammary cancer has been extensively studied over the past 25 years. One concept that illustrates the course of mammary tumorigenesis was proposed and developed by DeOme and co-workers.(1–4) The concept states that mammary tumors arise from morphologically discrete epithelial lesions that are altered from normal mammary epithelial cells. This concept of progressive stages in the development of mammary neoplasia was recognized at the turn of the century by Haaland,(5) who stressed the biological significance of hyperplastic changes that preceded neoplasia. The concept of multistage development of neoplasia gained general acceptance after the elegant experiments on experimental skin and liver tumorigenesis(6–19) and for neoplasias arising from most epithelial tissues.(20) A variety of human cancers are thought to progress through several stages, as evidenced by the terms “carcinoma in situ” and “precancerous cystic hyperplasia,”(21) although the concept is muddied by the lack of clearly defined criteria to characterize the various stages biologically.

Keywords

Mammary Gland Mammary Tumor Nodule Cell Chemical Carcinogen Tumor Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. DeOme, L. J. Faulkin, Jr., H. A. Bern, and P. B. Blair, Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice, Cancer Res. 19, 515–520 (1959).PubMedGoogle Scholar
  2. 2.
    K. B. DeOme, The mouse mammary tumor system, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), pp. 649–655, University of California Press, Berkeley (1967).Google Scholar
  3. 3.
    D. Medina and K. B. DeOme, Influence of mammary tumor virus on the tumor-producing capabilities of nodule outgrowth free of mammary tumor virus, J. Natl. Cancer Inst. 40, 1303–1308 (1968).PubMedGoogle Scholar
  4. 4.
    D. Medina, Preneoplastic lesions in mouse mammary tumorigenesis, in: Methods in Cancer Research (H. Busch, ed.), Vol. 7, pp. 3–53, Academic Press, New York (1973).Google Scholar
  5. 5.
    M. Haaland, Spontaneous tumors in mice, in: Fourth Scientific Report, Imperial Cancer Research Fund, pp. 1–111 (1911).Google Scholar
  6. 6.
    P. Rous and J. G. Kidd, Conditional neoplasms and subthreshold neoplastic states: A study of the tar tumors of rabbits. J. Exp. Med. 73, 365–389 (1941).PubMedPubMedCentralGoogle Scholar
  7. 7.
    I. MacKenzie and P. Rous, The experimental disclosure of latent neoplastic changes in tarred skin. J. Exp. Med. 73, 391–415 (1941).PubMedPubMedCentralGoogle Scholar
  8. 8.
    W. F. Friedewald and P. Rous, The pathogenesis of deferred cancer: A study of the after effects of methylcholanthrene upon rabbit skin. J. Exp. Med. 91, 459–484 (1950).PubMedPubMedCentralGoogle Scholar
  9. 9.
    J. C. Mottram, A developing factor in experimental blastogenesis. J. Pathol. Bacteriol. 56, 391–102 (1944).Google Scholar
  10. 10.
    J. C. Mottram, A sensitizing factor in experimental blastogenesis. J. Pathol. Bacteriol. 56, 391–402 (1944).Google Scholar
  11. 11.
    I. Berenblum and P. Shubik, The role of crotón oil applications, associated with a single painting of a carcinogen, in tumor induction of the mouse’s skin. Br. J. Cancer 1, 379–382 (1947).PubMedPubMedCentralGoogle Scholar
  12. 12.
    I. Berenblum and P. Shubik, The persistence of latent tumor cells induced in the mouse’s skin by a single application of 9 : 10-dimethylbenzanthracene, Br. J. Cancer 3, 384–386 (1949).PubMedPubMedCentralGoogle Scholar
  13. 13.
    I. Berenblum, Sequential aspects of chemical carcinogenesis: Skin, in: Cancer: A Comprehensive Treatise (F. Becker, ed.), Vol. 1, pp. 323–324, Plenum Press, New York (1975).Google Scholar
  14. 14.
    I. Berenblum, The two-stage mechanism of carcinogenesis in biochemical terms, in: The Physiopathology of Cancer (F. Homburger, ed.), Vol. 1, pp. 393–402, S. Karger, Basel (1974).Google Scholar
  15. 15.
    R. K. Boutwell, Some biological aspects of skin carcinogenesis, Prog. Exp. Tumor Res. 4, 207–250 (1964).PubMedGoogle Scholar
  16. 16.
    E. Farber, On the concept of minimal deviation hepatoma in the study of the biochemistry of cancer, Cancer Res. 28, 1210–1211 (1968).PubMedGoogle Scholar
  17. 17.
    E. Farber, Hyperplastic liver nodules, in: Methods in Cancer Research (H. Busch, ed.), Vol. 7, pp. 345–375, Academic Press, New York (1989).Google Scholar
  18. 18.
    S. Epstein, N. Ito, L. Merkow, and E. Farber, Cellular analysis of liver carcinogensis: The induction of large hyperplastic nodules in the liver with 2-fluorenylacetamide or ethionine and some aspects of their morphology and glycogen metabolism, Cancer Res. 27, 1702–1711 (1967).PubMedGoogle Scholar
  19. 19.
    L. P. Merkow, S. M. Epstein, B. J. Caito, and B. Bartus, The cellular analysis of liver carcinogensis: Ultrastructural alterations within hyperplastic liver nodules induced by 2-fluorenylacetamide, Cancer Res. 27, 1712–1721 (1967).PubMedGoogle Scholar
  20. 20.
    E. Farber and M. B. Sporn (eds.), Early lesions and the development of epithelial cancer, Cancer Res. 36, 2475–2706 (1976).Google Scholar
  21. 21.
    R. A. Willis, The Pathology of Tumors, Butterworths, London (1967).Google Scholar
  22. 22.
    R. D. Cardiff, S. R. Wellings, and L. J. Faulkin, Biology of breast preneoplasia, Cancer, 39, 2734–2746 (1977).PubMedGoogle Scholar
  23. 23.
    S. Nandi and C. S. McGrath, Mammary neoplasia in mice, in: Advances in Cancer Research (G. Klein and S. Weinhouse, eds.), Vol. 17, pp. 353–114, Academic Press, New York (1973).Google Scholar
  24. 24.
    M. R. Banerjee, Responses of mammary cells to hormones, Int. Rev. Cytol. 47, 1–97 (1976).PubMedGoogle Scholar
  25. 25.
    D. R. Pitelka, K. B. DeOme, and H. A. Bern, Virus-like particles in precancerous hyperplastic mammary tissues of C3H and C3Hf mice. J. Natl. Cancer Inst. 25, 753–777 (1960).PubMedGoogle Scholar
  26. 26.
    K. B. DeOme, The mammary tumor system in mice: A brief review, in: Viruses-Inducing Cancer (W. J. Burdette, ed.), pp. 127–137, University of Utah Press, Salt Lake City (1966).Google Scholar
  27. 27.
    O. Mühlbock, Note on a new inbred mouse-strain GR/A, Eur. J. Cancer 1, 123–124 (1965).PubMedGoogle Scholar
  28. 28.
    D. R. Pitelka, H. A. Bern, S. Nandi, and K. B. DeOme, On the significance of virus-like particles in mammary tissues of C3Hf mice. J. Natl. Cancer Inst. 33, 867–885 (1964).PubMedGoogle Scholar
  29. 29.
    S. Nandi, New method for detection of mouse mammary tumor virus. I. Influence of foster nursing on incidence of hyperplastic mammary nodules in BALB/cCrgl mice. J. Natl. Cancer Inst. 31, 57–73 (1963).PubMedGoogle Scholar
  30. 30.
    S. Nandi, New method for detection of mouse mammary tumor virus. II. Effect of administration of lactating mammary tissue extracts on incidence of hyperplastic mammary nodules in BALB/cCrgl mice. J. Natl. Cancer Inst. 31, 75–89 (1963).PubMedGoogle Scholar
  31. 31.
    S. Nandi, K. B. DeOme, and M. Hardin, Mammary tumor virus activity in blood and mammary tissues of C3H and BALB/cfC3H strains of mice. J. Natl. Cancer Inst. 35, 309–318 (1965).PubMedGoogle Scholar
  32. 32.
    S. Nandi, D. Knox, K. B. DeOme, M. Hardin, V. V. Finster, and P. B. Pickett, Mammary tumor virus activity in red blood cells of BALB/cfC3H mice. J. Natl. Cancer Inst. 36, 809–815 (1966).PubMedGoogle Scholar
  33. 33.
    D. Medina, J. Vaage, R. Setlacek, Mammary noduligenesis and tumorigenesis in pathogen-free C3Hf mice. J. Natl. Cancer Inst. 51, 961–965 (1973).PubMedGoogle Scholar
  34. 34.
    P. B. Blair and K. B. DeOme, Mammary tumor development in transplanted hyperplastic alveolar nodules of the mouse, Proc. Soc. Exp. Biol. Med. 108, 289–291 (1961).PubMedGoogle Scholar
  35. 35.
    D. Medina, K. B. DeOme, and L. Young, Tumor-producing capabilities of hyperplastic alveolar nodules in virgin and hormone-stimulated BALB/cfC3H and C3Hf mice. J. Natl. Cancer Inst. 44, 164–174 (1970).Google Scholar
  36. 36.
    L. J. Faulkin, Jr., Hyperplastic lesions of mouse mammary glands after treatment with 3-methylcholanthrene. J. Natl. Cancer Inst. 36, 289–298 (1966).PubMedGoogle Scholar
  37. 37.
    D. Medina and M. Warner, Mammary tumorigenesis in chemical carcinogen-treated mice. IV. Induction of mammary ductal hyperplasis. J. Natl. Cancer Inst. 57, 331–337 (1976).PubMedGoogle Scholar
  38. 38.
    D. Medina, Mammary tumorigenesis in chemical carcinogen-treated mice. VI. Tumor-producing capabilities of mammary dysplasias in BALB/cCrgl mice. J. Natl. Cancer Inst. 57, 1185–1189 (1976).PubMedGoogle Scholar
  39. 39.
    D. Medina and K. B. DeOme, Effects of various oncogenic agents on tumor-producing capabilities of D series BALB/c mammary nodule outgrowth lines. J. Natl. Cancer Inst. 45, 353–363 (1970).PubMedGoogle Scholar
  40. 40.
    A. Dux and O. Mühlbock, Enhancement by hypophyseal hormones on the malignant transformation of transplanted hyperplastic nodules of the mouse mammary gland. Eur. J. Cancer 5, 191–194 (1969).PubMedGoogle Scholar
  41. 41.
    D. Medina, Preneoplastic lesions in murine mammary cancer, Cancer Res. 36, 2589–2595 (1976).PubMedGoogle Scholar
  42. 42.
    A. Kirshbaum, W. L. Williams, and J. J. Bittner, Induction of mammary cancer with methylcholanthrene; histogenesis of induced neoplasms, Cancer Res. 6, 354–362 (1946).Google Scholar
  43. 43.
    A. G. Liebelt and R. A. Liebelt, The “nodule-cancer” complex of mammary tissue in low cancer strains of mice, Lav. 1st. Anat. Istol. Patol. Univ. Studi Perugia 34, 146 (1974).Google Scholar
  44. 44.
    L. J. Beuving, L. J. Faulkin, Jr., K. B. DeOme, and V. V. Bergs, Hyperplastic lesions in the mammary glands of Sprague-Dawley rats after 7,12-dimethylbenzanthracene treatment. J. Natl. Cancer Inst. 39, 423–429 (1967).PubMedGoogle Scholar
  45. 45.
    L. J. Beuving, H. A. Bern, and K. B. DeOme, Occurrence and transplantation of carcinogen-induced hyperplastic nodules in Fischer rats. J. Natl. Cancer Inst. 39, 431–447 (1967).Google Scholar
  46. 46.
    A. M. Cameron and L. J. Faulkin, Hyperplastic and inflammatory nodules in the canine mammary gland. J. Natl. Cancer Inst. 47, 1277–1287 (1971).PubMedGoogle Scholar
  47. 47.
    M. Warner, Mammary gland morphology of female beagle dogs: Studies in vivo and in vitro, Ph.D. thesis, Department of Anatomy, University of California, Davis (1972).Google Scholar
  48. 48.
    S. R. Wellings, H. M. Jensen, and R. G. Marcum, An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55, 231–274 (1975).PubMedGoogle Scholar
  49. 49.
    H. M. Jensen and S. R. Wellings, Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse, Cancer Res. 36, 2605–2610 (1976).PubMedGoogle Scholar
  50. 50.
    H. M. Jensen, J. R. Rice, and S. R. Wellings, Preneoplastic lesions in the human breast, Science 191, 295–297 (1976).PubMedGoogle Scholar
  51. 51.
    L. J. Beuving, Mammary tumor formation within outgrowths of transplanted hyperplastic nodules from carcinogen-treated rats. J. Natl. Cancer Inst. 40, 1287–1291 (1968).PubMedGoogle Scholar
  52. 52.
    D. Sinha and T. L. Dao, Hyperplastic alveolar nodules of the rat mammary gland: Tumor-producing capability in vivo and in vitro, Cancer Lett. 2, 153–160 (1977).Google Scholar
  53. 53.
    S. Z. Haslam, Influence of age of treatment with DMBA on ovary-dependent and independent mammary tumor development in rats, Proc. Am. Assoc. Cancer Res. 67, 366 (1976).Google Scholar
  54. 54.
    E. M. Rivera, M. Walbridge, and S.D. Hill, Tumor development in transplants of rat mammary hyperplastic alveolar nodules, Proc. Am. Assoc. Cancer Res. 68, 810 (1977).Google Scholar
  55. 55.
    L. Beuving, Biological characteristics of preneoplastic lesions in the mammary glands of carcinogen-treated rats, Ph.D. thesis, University of California, Berkeley (1968).Google Scholar
  56. 56.
    I. Russo, J. Saby, and J. Russo, Pathogenesis of rat mammary carcinomas induced by DMBA, Proc. Am. Assoc. Cancer Res. 16, 164 (1975).Google Scholar
  57. 57.
    J. Russo, I. H. Russo, M. Ireland, and J. Saby, Increased resistance of multiparous rat mammary gland to neoplastic transformation by 7,12-dimethylbenzanthracene, Proc. Am. Assoc. Cancer Res. 68, 149 (1977).Google Scholar
  58. 58.
    C. W. Daniel, K. B. DeOme, L. J. T. Young, P. B. Blair, and L. J. Faulkin, The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study, Proc. Natl. Acad. Sci. U.S.A. 61, 53–60 (1968).PubMedPubMedCentralGoogle Scholar
  59. 59.
    L. J. T. Young, D. Medina, K. B. DeOme, and C. W. Daniel, The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland, Exp. Gerontol. 6, 49–56 (1971).PubMedGoogle Scholar
  60. 60.
    C. W. Daniel, L. J. T. Young, and D. Medina, The influence of mammogenic hormones on serially transplanted mouse mammary gland, Exp. Gerontol. 6, 95–101 (1971).PubMedGoogle Scholar
  61. 61.
    C. W. Daniel, B. D. Aidells, D. Medina, and L. J. Faulkin, Limited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34, 64–67 (1975).Google Scholar
  62. 62.
    R. A. Liebelt, C. B. Bordeion, and A. G. Liebelt, The adipose tissue system and food intake, Prog. Physiol. Psychol. 5, 211–252 (1973).Google Scholar
  63. 63.
    L. J. Faulkin, Jr., and K. B. DeOme, Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J. Natl. Cancer Inst. 24, 953–969 (1960).PubMedGoogle Scholar
  64. 64.
    P. B. Blair, K. B. DeOme, and S. Nandi, The preneoplastic state in mouse mammary carcinogenesis in: Biological Interactions in Normal and Neoplastic Cells (M. Brennan, ed.), pp. 371–389, Little, Brown, Boston (1962).Google Scholar
  65. 65.
    H. A. Bern and S. Nandi, Recent studies of the hormonal influence in mouse mammary tumorigenesis, Prog. Exp. Tumor Res. 2, 91–145 (1961).Google Scholar
  66. 66.
    R. Yanai and H. Nagasawa, Enhancement by pituitary isografts of mammary hyperplastic nodules in adreno-ovariectomized mice. J. Natl. Cancer Inst. 46, 1251–1255 (1971).PubMedGoogle Scholar
  67. 67.
    C. W. Welsch and C. Gribler, Prophylaxis of spontaneously developing mammary carcinoma in C3H/HeJ female mice by suppression of prolactin, Cancer Res. 33, 2939–2946 (1973).PubMedGoogle Scholar
  68. 68.
    C. W. Welsch, Prophylaxis of early preneoplastic lesions of the mammary gland, Cancer Res. 36, 2621–2625 (1976).PubMedGoogle Scholar
  69. 69.
    D. Medina, Tumor formation in preneoplastic mammary nodule lines in mice treated with nafoxidine, testosterone, and 2-bromo-α-ergocryptine. J. Natl. Cancer Inst. 58, 1107–1110 (1977).PubMedGoogle Scholar
  70. 70.
    C. Watson, C. Medina, and J. H. Clark, Estrogen receptor characterization in a transplantable mouse mammary tumor, Cancer Res. 37, 3344–3348 (1977).PubMedGoogle Scholar
  71. 71.
    G. Shyamala, Estradiol receptors in mouse mammary tumors: Absence of the transfer of bound estradiol from the cytoplasm to the nucleus, Biochem. Biophys. Res. Commun. 46, 1623–1630 (1972).PubMedGoogle Scholar
  72. 72.
    J. R. Richards, G. Shyamala, and S. Nandi, Estrogen receptors in normal and neoplastic mouse mammary tissues, Cancer Res. 34, 2764–2772 (1974).PubMedGoogle Scholar
  73. 73.
    D. W. Weiss, L. J. Faulkin, Jr., and K. B. DeOme, Acquisition of heightened resistance and susceptibility to spontaneous mouse mammary carcinomas in the original host, Cancer Res. 24, 732–741 (1964).PubMedGoogle Scholar
  74. 74.
    D. W. Weiss, D. H. Lavrin, M. Dezfulian, J. Vaage, and P. B. Blair, Studies on the immunology of spontaneous mammary cancer in mice, in: Viruses-Inducing Cancer (W. J. Burdette, ed.), pp. 138–168, University of Utah Press, Salt Lake City (1966).Google Scholar
  75. 75.
    D. L. Morton, L. Goldman, and D. A. Wood, Acquired immunological tolerance and carcinogenesis by the mammary tumor virus. II. Immune responses influencing growth of spontaneous mammary adenocarcinomas. J. Natl. Cancer Inst. 42, 321–329 (1969).PubMedGoogle Scholar
  76. 76.
    A. M. Attia, K. B. DeOme, and D. W. Weiss, Immunology of spontaneous mammary carcinomas in mice. II. Resistance to rapidly and slowly developing tumors, Cancer Res. 25, 451–457 (1965).PubMedGoogle Scholar
  77. 77.
    D. S. Burton, P. B. Blair, and D. W. Weiss, Protection against mammary tumors in mice by immunization with purified mammary tumor virus preparations, Cancer Res. 29, 971–973 (1969).PubMedGoogle Scholar
  78. 78.
    J. Vaage, Nonvirus-associated antigens in virus-induced mouse mammary tumors, Cancer Res. 28, 2477–2483 (1968).PubMedGoogle Scholar
  79. 79.
    J. Vaage, Non-cross-reacting resistance to virus-induced mouse mammary tumors in virus infected C3H mice, Nature (London) 218, 101–102 (1968).Google Scholar
  80. 80.
    J. Vaage, T. Kalinovsky, and R. Olson, Antigenic differences among virus-induced mouse mammary tumors arising spontaneously in the same C3H/Crgl host, Cancer Res. 29, 1452–1456 (1969).PubMedGoogle Scholar
  81. 81.
    G. H. Heppner and G. Pierce, In vitro demonstration of tumor-specific antigens in spontaneous mammary tumors of mice, Int. J. Cancer 4, 212–218 (1969).PubMedGoogle Scholar
  82. 82.
    D. W. Weiss, A. Sultizeanu, L. Young, M. Adelberg, and Y. Segev, Studies on the immunogenicity of preneoplastic and neoplastic mammary tissues of BALB/c mice free of the mammary tumor virus Isr. J. Med. Sci. 7, 187–201 (1971).PubMedGoogle Scholar
  83. 83.
    Z. T. Halpin, J. Vaage, and P. B. Blair, Lack of antigenicity of mammary tumors induced by carcinogens in a nonantigenic preneoplastic lesion, Cancer Res. 32, 2197–2200 (1972).PubMedGoogle Scholar
  84. 84.
    G. H. Heppner, J. S. Kopp, and D. Medina, Microcytotoxicity assay of immune responses to non-mammary tumor virus-induced, preneoplastic and neoplastic mammary lesions in BALB/c mice, Cancer Res. 36, 753–758 (1976).PubMedGoogle Scholar
  85. 85.
    G. Slemmer, Host response to premalignant mammary tissues, J. Natl. Cancer Inst. Monogr. 35, 57–71 (1972).Google Scholar
  86. 86.
    R. T. Prehn, Tumor progression and homeostasis, Adv. Cancer Res. 23, 203–236 (1976).PubMedGoogle Scholar
  87. 87.
    D. H. Lavrin, P. B. Blair, and D. W. Weiss, Immunology of spontaneous mammary carcinomas in mice. III. Immunology of C3H preneoplastic hyperplastic alveolar nodules in C3Hf hosts, Cancer Res. 26, 293–304 (1966).PubMedGoogle Scholar
  88. 88.
    D. H. Lavrin, P. B. Blair, and D. W. Weiss, Immunology of spontaneous mammary carcinomas in mice. IV. Association of the mammary tumor virus with the immunogenicity of C3H nodules and tumors, Cancer Res. 26, 929–934 (1966).PubMedGoogle Scholar
  89. 89.
    D. Medina and G. H. Heppner, Cell-mediated “immunostimulation” induced by mammary tumor virus-free BALB/c mammary tumors, Nature (London) 242, 329–330 (1973).Google Scholar
  90. 90.
    R. L. Stolfi, R. A. Fugmann, L. M. Stolfe, and D. S. Martin, Synergism between host anti-tumor immunity and combined modality therapy against murine breast cancer, Int. J. Cancer 13, 389–403 (1974).PubMedGoogle Scholar
  91. 91.
    D. S. Martin, R. A. Fugmann, R. L. Stolfi, and P. E. Hayworth, Solid tumor animal model therapeutically predictive for human breast cancer, Cancer Chemother. Rep. 5, 89–109 (1975).Google Scholar
  92. 92.
    B. Fisher, N. Wolmack, E. Saffer, and E. R. Fisher, Inhibitory effects of prolonged Corynebacterium Parvum and cyclophosphamide administration on the growth of established tumors, Cancer 35, 134–143 (1975).PubMedGoogle Scholar
  93. 93.
    A. E. Bogden and D. J. Taylor, Predictive mammary tumor test systems for experimental chemotherapy, in: Breast Cancer (J. C. Heuson, W. H. Mattheiem, and M. Rozencweig, eds.), Vol. 2, pp. 95–110, Raven Press, New York (1976).Google Scholar
  94. 94.
    D. Medina and F. Shepherd, Enhancement and inhibition of mammary tumor formation and growth by cytostatic drugs, Cancer Res. 37, 3571–3577 (1977).PubMedGoogle Scholar
  95. 95.
    A. Haddow, R. J. C. Harris, G. A. R. Kon, and E. M. F. Roe, The growth inhibitory and carcinogenic properties of 4-amino-stilbene and derivatives, Philos. Trans. R. Soc. London Ser. A 241, 147–196 (1949).Google Scholar
  96. 96.
    C. Bertazzoli, T. Chiali, and E. Solcia, Different incidence of breast carcinomas or fibroadenomas in daunomycin or adriamycin treated rats, Experientia 27, 1209–1210 (1971).PubMedGoogle Scholar
  97. 97.
    J. H. Weisburger, D. P. Griswold, Jr., J. D. Prejean, A. E. Casey, H. B. Wood, and E. K. Weisburger, The carcinogenic properties of some of the principle drugs used in clinical cancer chemotherapy, Recent Results Cancer Res. 52, 1–17 (1975).PubMedGoogle Scholar
  98. 98.
    S. M. Sieber and R. H. Adamson, Toxicity of antineoplastic agents in man, chromosomal aberrations, antifertility effects, congenital malformations, and carcinogenic potential, Adv. Cancer Res. 22, 57–155 (1975).PubMedGoogle Scholar
  99. 99.
    K. B. DeOme, D. Medina, and L. Young, Interference between the nodule-inducing virus and the mammary tumor virus at the level of the neoplastic transformation, in: Immunity and Tolerance in Oncogenesis (L. Severi, ed.), pp. 541–549, Division of Cancer Research, University of Perugia, Perugia (1970).Google Scholar
  100. 100.
    D. Medina, K. B. DeOme, D. R. Pitelka, and V. B. Colley, Appearance of virus particles in BALB/c mammary nodule outgrowth lines transplanted into BALB/cfC3H and (C3Hf x BALB/c) F1 mice. J. Natl. Cancer Inst. 46, 1153–1160 (1971).PubMedGoogle Scholar
  101. 101.
    A. Vaidya and E. Y. Lasf argues, Murine mammary tumor virus infection of mouse mammary epithelial cells in vitro, Proc. Am. Assoc. Cancer Res. 68, 960 (1977).Google Scholar
  102. 102.
    D. Medina, unpublished observations.Google Scholar
  103. 103.
    J. S. Butel, J. P. Dudley, and D. Medina, Comparison of the growth properties in vitro and transplantability of continuous mouse mammary tumor cell lines and clonal derivatives, Cancer Res. 37, 1892–1900 (1977)PubMedGoogle Scholar
  104. 104.
    C. M. McGrath, E. J. Marineau, and B. A. Voyles, Levels of MMTV sequences in DNA of “virus-” and “hormone-induced” malignant mammary epithelial cells of the BAT B/c mouse. Proc. Am. Assoc. Cancer Res. 68, 979 (1977).Google Scholar
  105. 105.
    W. Drohan, R. Kettman, D. Colcher, and J. Schlom, Isolation of the mouse mammary tumor virus sequences not transmitted as germinal provirus in the C3H and RIII mouse strains. J. Virol. 21, 986–995 (1977).PubMedPubMedCentralGoogle Scholar
  106. 106.
    E. Huberman and L. Sachs, Cell susceptibility to transformation and cytotoxicity by the carcinogenic hydrocarbon benzopyrene, Proc. Natl. Acad. Sci. U.S.A. 56, 1123–1129 (1966).PubMedPubMedCentralGoogle Scholar
  107. 107.
    E. Huberman and L. Sachs, Susceptibility of cells transformed by Polyoma virus and SV-40 to the cytotoxic effect of the carcinogen hydrocarbon benzopyrene. J. Natl. Cancer Inst. 40, 329–336 (1968).PubMedGoogle Scholar
  108. 108.
    L. Sachs, An analysis of the mechanism of neoplastic cell transformation by Polyoma hydrocarbons, and X-irradiation, Curr. Top. Dev. Biol. 2, 129–150 (1967).PubMedGoogle Scholar
  109. 109.
    T. T. Chen and C. Heidelberger, Quantitative studies on the malignant transforma tion of mouse prostate cells by carcinogenic hydrocarbons in vitro, Int. J. Cancer 4, 166–178 (1969).Google Scholar
  110. 110.
    J. A. DiPaolo, K. Takano, and N. C. Popescu, Quantitation of chemically-induced neoplastic transformation of BALB/3T3 cloned cell lines, Cancer Res. 32, 2686–2695 (1972).PubMedGoogle Scholar
  111. 111.
    M. J. Brennan, W. H. Grace, and J. A. Singly, Carcinogenesis in the rat mammary gland after exposure in vitro to DMBA, Proc. Am. Assoc. Cancer Res. 57, 9 (1966).Google Scholar
  112. 112.
    M. R. Banerjee, B. G. Wood, and L. L. Washburn, Chemical carcinogen-induced alveolar nodules in organ culture of mouse mammary gland. J. Natl. Cancer Inst. 53, 1387–1394 (1974).PubMedGoogle Scholar
  113. 113.
    D. Medina, G. Stockman, and D. Griswold, Significance of chemical carcinogen-induced immunosuppression in mammary tumorigenesis in BALB/c mice, Cancer Res. 34. 2663–2668 (1974).PubMedGoogle Scholar
  114. 114.
    D. Medina, S. B. O’Bryan, M. R. Warner, Y. N. Sinha, W. P. Vander Laan, S. McCormack, and P. Hahn, Prolactin and progesterone levels in chemical carcinogen treated BALB/c mice. J. Natl. Cancer Inst. 59, 213–219 (1977).PubMedGoogle Scholar
  115. 115.
    J. Stjernsward, Immunodepressive effect of 3-methylcholanthrene: Antibody formation at the cellular level and reaction against weak antigenic homografts, J. Natl. Cancer Inst. 35, 885–892 (1965).PubMedGoogle Scholar
  116. 116.
    J. Stjernsward, Effect of non-carcinogenic and carcinogenic hydrocarbons on antibody forming cells measured at the cellular levei in vitro, J. Natl. Cancer Inst. 36, 1189–1195 (1966).Google Scholar
  117. 117.
    O. Stutman, Immunological aspects of resistance to the oncogenic effect of 3-methylcholanthrene in mice, Isr. J. Med. Sci. 9, 217–228 (1973).PubMedGoogle Scholar
  118. 118.
    J. W. Jull, Hormonal mechanisms in carcinogenesis, Can. Cancer Conf. 6, 109–123 (1968).Google Scholar
  119. 119.
    T. Krarup, Effect of 9,10-dimethyl-l,2-benzanthracene on the mouse ovary, Br. J. Cancer 24, 168–186 (1970).PubMedPubMedCentralGoogle Scholar
  120. 120.
    D. Medina, Serial transplantation of methylcholanthrene treated mammary nodule outgrowth line D1. J. Natl. Cancer Inst. 48, 1363–1370 (1972).PubMedGoogle Scholar
  121. 121.
    R. G. Mehta, L. L. Washburn, P. N. Young, M. R. Banerjee, and H. A. Bern, Proliferation of preneoplastic mammary nodule outgrowth in mammary fat pads of BALB/c mice in organ culture. J. Natl Cancer Inst. 52, 1013–1018 (1974).PubMedGoogle Scholar
  122. 122.
    Z. Rabinowitz and L. Sachs, The formation of variants with a reversion of properties of transformed cells. V. Reversion to a limited life span, Int. J. Cancer 6, 388–398 (1970).PubMedGoogle Scholar
  123. 123.
    D. Medina, L. J. Faulkin, Jr., and K. B. DeOme, Combined effects of 3-methylcholanthrene, mammary tumor virus, nodule-inducing virus, and prolonged hormonal stimulation on the tumor-producing capabilities of the nodule outgrowth line Dl, J. Natl Cancer Inst. 44, 159–165 (1970).PubMedGoogle Scholar
  124. 124.
    C. S. Nicoll, Growth autoregulation and the mammary gland, J. Natl. Cancer Inst. 34, 131–140 (1965).PubMedGoogle Scholar
  125. 125.
    B. Mintz and G. Slemmer, Gene control of neoplasia. I. Genotypic mosaicism in normal and preneoplastic mammary glands of allophenic mice, J. Nat. Cancer Inst. 43, 87–95 (1969).PubMedGoogle Scholar
  126. 126.
    M. J. Miyamoto, K. B. DeOme, and R. C. Osborn, Detection of inapparent preneoplastic-transformed cells by in vivo cultivation of dissociated mouse mammary glands, Proc. Am. Assoc. Cancer Res. 66, 57 (1975).Google Scholar
  127. 127.
    M. J. Miyamoto, Occurrence and preneoplastic significance of hyperplastic alveolar nodules in the strain GR mouse, Proc. Am. Assoc. Cancer Res. 67, 131 (1976).Google Scholar
  128. 128.
    D. Medina and F. Shepherd, Enhancement of the tumor potential of preneoplastic mammary cells by enzymatic dissociation, Proc. Am. Assoc. Cancer Res. 68, 335 (1977).Google Scholar
  129. 129.
    R. Robbin, I. N. Chou, and P. H. Black, Proteolytic enzymes, cell surface changes and viral transportation, Adv. Cancer Res. 19, 203–259 (1975).Google Scholar
  130. 130.
    H. Rubin and T. Koide, Early cellular responses to diverse growth stimuli independent of protein and RNA synthesis, J. Cell Physiol 86, 47–58 (1975).PubMedGoogle Scholar
  131. 131.
    J. J. Starling, S. C. Capetillo, G. Neri, and E. F. Walborg, Surface properties of normal and neoplastic rat liver cells: Lectin-induced cytoagglutinarion and lectin receptor activity of cell surface glycopeptides, Exp. Cell Res. 104, 177–190 (1977).PubMedGoogle Scholar
  132. 132.
    G. Slemmer, Interactions of separate types of cells during normal and neoplastic mammary gland growth, J. Invest. Dermatol 63, 27–47 (1974).Google Scholar
  133. 133.
    H. L. Hosick, A note on growth of epithelial tumor cells in primary culture, Cancer Res. 34, 259–261 (1974).PubMedGoogle Scholar
  134. 134.
    H. L. Hosick and K. B. DeOme, Plating and maintenance of epithelial tumor cells in primary culture: Interacting roles of serum and insulin, Exp. Cell Res. 84, 419–425 (1974).PubMedGoogle Scholar
  135. 135.
    N. K. Das, H. L. Hosick, and S. Nandi, Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium, J. Natl. Cancer Inst. 52, 849–861 (1974).PubMedGoogle Scholar
  136. 136.
    C. M. McGrath, Cell organization and responsiveness to hormones in vitro: Genesis of domes in mammary cell cultures, Am. Zool. 15, 231–236 (1975).Google Scholar
  137. 137.
    D. R. Pitelka, S. T. Hamamoto, J. G. Duafala, and M. K. Nemanic, Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle, J. Cell Biol. 56, 797–818 (1973).PubMedPubMedCentralGoogle Scholar
  138. 138.
    P. B. Pickett, D. R. Pitelka, S. T. Hamamoto, and D. S. Misfeldt, Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells, J. Cell Biol. 66, 316–332 (1975).PubMedGoogle Scholar
  139. 139.
    G. L. Nicolson, Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy, Biochim. Biophys. Acta 458, 1–72 (1976).PubMedGoogle Scholar
  140. 140.
    V. Fonte and K. R. Porter, Topographical changes associated with the viral transformation of normal cells to tumorigenicity, in: Eighth Int. Cong. Elect. Micro. (J. V. Sanders and D. J. Goodchild, eds.). Vol. 2, pp. 334–335, Australian Academy of Sciences, Canberra (1974).Google Scholar
  141. 141.
    R. Pollack, M. Osborne, and K. Weber, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. U.S.A. 72, 994–998 (1975).PubMedPubMedCentralGoogle Scholar
  142. 142.
    B. R. Brinkley, G. M. Fuller, and D. P. Highfield, Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence, Proc. Natl. Acad. Sci. U.S.A. 72, 4981–4985 (1975).PubMedPubMedCentralGoogle Scholar
  143. 143.
    B. Asch, D. Medina, and B. Brinkley, Cytoskeletal changes associated with neoplastic progression in mouse mammary epithelial cells (submitted) (1978).Google Scholar
  144. 144.
    B. A. Voyles and C. M. McGrath, Markers to distinguish normal and neoplastic mammary epithelial cells in vitro: Comparison of saturation density, morphology, and Concanavalin A reactivity, Int. J. Cancer 18, 498–509 (1976).PubMedGoogle Scholar
  145. 145.
    P. Furmanski, P. G. Phillips, and M. Lubin, Cell surface interactions with concanavalin A: Determination by microhemadsorption, Proc. Soc. Exp. Biol. (N.Y.) 140, 216–219 (1972).Google Scholar
  146. 146.
    B. Asch, Surface properties of mouse mammary cells, Proc. Am. Assoc. Cancer Res. 68, 96 (1977).Google Scholar
  147. 147.
    R. Damadian, Tumor detection by nuclear magnetic resonance, Science 171, 1151–1153 (1971).PubMedGoogle Scholar
  148. 148.
    C. F. Hazlewood, D. C. Chang, D. Medina, G. Cleveland, and B. L. Nichols, Distinction between the preneoplastic and neoplastic state of murine mammary glands, Proc. Natl. Acad. Sci. U.S.A. 69, 1478–1480 (1972).PubMedCentralGoogle Scholar
  149. 149.
    G. L. Cottam, A. Vasek, and D. Lusted, Water proton relaxation rates in various tissues, Res. Commun. Chem. Pathol. Pharmacol. 4, 495–502 (1972).PubMedGoogle Scholar
  150. 150.
    R. A. Floyd, T. Yoshida, and J. S. Leigh, Changes in tissue water proton relaxation rates during early phases of chemical carcinogenesis, Proc. Natl. Acad. Sci. U.S.A. 72, 56–58 (1975).PubMedPubMedCentralGoogle Scholar
  151. 151.
    C. F. Hazlewood, G. Cleveland, and D. Medina, Relationship between hydration and proton nuclear magnetic resonance relaxation times in tissues of tumor-bearing and non-tumor bearing mice: Implications for cancer detection. J. Natl. Cancer Inst. 52, 1849–1853 (1974).PubMedGoogle Scholar
  152. 152.
    I. Weisminn, L. Bennett, L. Maxwell, Mark W. Woods, and D. Burk, Recognition of cancer in vivo by nuclear magnetic resonance, Science 178, 1288–1290 (1972).Google Scholar
  153. 153.
    H. E. Frey, R. R. Knispel, J. Kruuv, A. R. Sharp, R. T. Thompson, and M. M. Pintar, Proton spin-lattice relaxation studies of non-malignant tissues of tumorous mice. J. Natl. Cancer Inst. 49, 903–906 (1972).PubMedGoogle Scholar
  154. 154.
    W. R. Inch, J. A. McCredie, R. R. Knispel, R. T. Thompson, and M. M. Pintar, Water content and proton spin-relaxation time for neoplastic and non-neoplastic tissues from mice and humans. J. Natl. Cancer Inst. 52, 353–356 (1974).PubMedGoogle Scholar
  155. 155.
    R. A. Floyd, J. S. Leigh, B. Chance, and M. Miko, Time course of tissue water proton spin-lattice relaxation in mice developing ascites tumor, Cancer Res. 34, 89–91 (1974).PubMedGoogle Scholar
  156. 156.
    J. S. Economou, L. C. Parks, L. A. Saryan, D. P. Hollis, J. L. Czeisler, and J. Eggleston, Detection of malignancy by nuclear magnetic resonance, Surg. Forum 24, 127–129 (1973).PubMedGoogle Scholar
  157. 157.
    P. T. Beall, D. Medina, D. C. Chang, P. K. Scitz, and C. F. Hazlewood, A systemic effect of benign and malignant mammary cancer on the spin-lattice relaxation time, T1, on water protons in mouse serum, J. Natl. Cancer Inst. 59, 1431–1433 (1977).PubMedGoogle Scholar
  158. 158.
    D. Medina, C. F. Hazlewood, G. C. Cleveland, D. C. Chang, H. J. Spjut, and R. Movers, Nuclear magnetic resonance studies on human breast dysplasias and neoplasms, J. Natl. Cancer Inst. 54, 813–818 (1975).PubMedGoogle Scholar
  159. 159.
    R. Damadian, L. Minkoff, M. Goldsmith, M. Stanford, and J. Koutcher, Field focusing nuclear magnetic resonance (FONAR): Visualization of tumor in a live animal, Science 194, 1430–1432 (1976).PubMedGoogle Scholar
  160. 160.
    S. Abraham and J. C. Bartley, Comparisons among metabolic characteristics of normal, preneoplastic, and neoplastic mammary tumors, in: Hormones and Cancer (K. McKerns, ed.), pp. 29–74, Academic Press, New York (1974).Google Scholar
  161. 161.
    L. Kopelovitch, S. Abraham, H. McGrath, K. B. DeOme, and I. L. Chaikoff, Metabolic characteristics of a naturally occurring preneoplastic tissue. I. Glycolytic enzyme activities of hyperplastic alveolar nodule outgrowths and adenocarcinomas of the mouse mammary gland, Cancer Res. 26, 1534–1546 (1966).Google Scholar
  162. 162.
    L. Kopelovitch, S. Abraham, H. McGrath, K. B. DeOme, and I. L. Chaikoff, Metabolic characteristics of a naturally occurring preneoplastic tissue. II. Soluble Krebs cycle enzyme activities of hyperplastic alveolar nodule outgrowths and adenocarcinomas of the mouse mammary gland, Cancer Res. 35, 800–805 (1967).Google Scholar
  163. 163.
    R. Hilf, R. Ickowicz, J. C. Bartley, and S. Abraham, Multiple molecular forms of glucose-6-phosphate dehydrogenase in normal, preneoplastic, and neoplastic mammary tissues of mice, Cancer Res. 35, 2109–2116 (1975).PubMedGoogle Scholar
  164. 164.
    J. C. Bartley, H. McGrath, and S. Abraham, Glucose and acetate utilization by hyperplastic alveolar nodule outgrowths and adenocarcinomas of mouse mammary gland, Cancer Res. 31, 527–537 (1971).PubMedGoogle Scholar
  165. 165.
    A. Nahas, S. Abraham, and T. C. Hall, Tumorigenesis in mice and changes in thymidylate biosynthetic enzymes, Proc. Am. Assoc. Cancer Res. 63, 451 (1972).Google Scholar
  166. 166.
    R. Gantt, G. H. Smith, and B. T. Julian, Virion-associated and cellular RNA methylase activity in normal and neoplastic mammary tissue from mammary tumor virus-infected and uninfected mice, Cancer Res. 35, 1847–1853 (1975).PubMedGoogle Scholar
  167. 167.
    W. J. Bodell, Distribution of DNA repair in chromatin, Proc. Am. Assoc. Cancer Res. 68, 470 (1977).Google Scholar
  168. 168.
    M. R. Banerjee, R. C Mehta, and J. E. Wagner, DNA polymerase activity and DNA synthesis in preneoplastic nodule outgrowths of BALB/c and C3H mouse mammary gland. J. Natl. Cancer Inst. 50, 339–345 (1973).PubMedGoogle Scholar
  169. 169.
    D. N. Banerjee, M. R. Banerjee, and R. G. Mehta, Hormonal regulation of rapidly labeled RNA in normal, preneoplastic and neoplastic tissues of mouse mammary gland. J. Natl. Cancer Inst. 51, 843–849 (1973).PubMedGoogle Scholar
  170. 170.
    P. Hohmann, R. D. Cole, and H. A. Bern, A comparison of lysine-rich histones in various normal and neoplastic mouse tissues. J. Natl. Cancer Inst. 47, 337–341 (1971).PubMedGoogle Scholar
  171. 171.
    P. Hohmann, H. A. Bern, and R. D. Cole, Responsiveness of preneoplastic and neoplastic mouse mammary tissues to hormones: CaScin and histone synthesis. J. Natl. Cancer Inst. 49, 355–360 (1972).PubMedGoogle Scholar
  172. 172.
    M. E. McClure and D. Medina, Similarity of chromatin nonhistone protein contents during breast neoplasia in the mouse, Proc. Am. Assoc. Cancer Res. 66, 814 (1975).Google Scholar
  173. 173.
    M. E. McClure and D. Medina, Chromatin nonhistone protein variations during neoplastic progression in mouse mammary tissues, Proc. Am. Assoc. Cancer Res. 67, 562 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Daniel Medina
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations