Molecular, Cellular, Invertebrate Biology

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

To determine if microwaves disrupt the hydrogen bonding between DNA strands of the double helix, Hamrick (1973) constructed DNA melting curves after exposure of DNA to continuous-wave (CW) 2.45-GHz microwaves at 67 W/kg for 16 hr and up to 160 W/kg for 1 hr. Temperature was controlled, usually at 37°C, but for some experiments at 40°C, 45°C, and 50°C. All melting curves were virtually identical to those for unexposed, temperature-matched controls.

Keywords

Power Density Microwave Radiation Chromosome Aberration Microwave Energy Tritiated Thymidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M. T., N. Barthakur, N. G. Lambert, and S. S. Kasatiya (1978) Cytological effects of microwave radiation in Chinese hamster cells in vitro. Can. J. Genet. Cytol. 20: 23.Google Scholar
  2. Allis, J. W. (1975) Irradiation of bovine serum albumin with a crossed-beam exposure-detection system. Ann. N.Y. Acad. Sci. 247: 312.CrossRefGoogle Scholar
  3. Allis, J. W., and M. L. Fromme (1976) Pseudosubstrate binding to ribonuclease during exposure to microwave radiation at 1.70 and 2.45 GHz. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–80010, pp. 366-376.Google Scholar
  4. Allis, J. W., and M. L. Fromme (1979) Activity of membrane-bound enzymes exposed to sinusoidally modulated 2450 MHz microwave radiation. Radio Sci. 14 (S): 85.CrossRefGoogle Scholar
  5. Ames, B. N., J. McCann, and E. Yamasaki (1975) Methods for detecting carcinogens and mutagens with the Salmonella mammalian-microsome mutagenicity test. Mutat. Res. 31: 347.CrossRefGoogle Scholar
  6. Ark, P. A., and W. Parry (1940) Application of high-frequency electrostatic fields in agriculture. Q. Rev. Biol. 16: 172.CrossRefGoogle Scholar
  7. Averbeck, D., M. Dardalhon, and A. J. Berteaud (1976) Microwave action in prokaryotic and eucaryotic cells and a possible interaction with X-rays. J. Microwave Power 11: 143.Google Scholar
  8. Baker, V. H., D. E. Wiant, and O. Taboada (1956) Some effects of microwaves on certain insects which infest wheat and flour. J. Econ. Entomol. 49: 33.Google Scholar
  9. Baldwin, R. E., M. Cloninger, and M. L. Fields (1968) Growth and destruction of Salmonella typhimurium in egg white foam products cooked by microwaves. J. Appl. Microbiol. 16: 1929.Google Scholar
  10. Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson and Ross, Stroudsburg, Pa.Google Scholar
  11. Baranski, S., S. Szmigielski, and J. Moneta (1974) Effect of microwave irradiation in vitro on cell permeability. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, p. 173.Google Scholar
  12. Baranski, S., H. Debiec, K. Kwarecki, and T. Mezykowski (1976) Influence of microwaves on genetical processes of Aspergillus nidulans. J. Microwave Power 11: 146.Google Scholar
  13. Baranski, S., J. Bal, H. Debiec, K. Kwarecki, and T. Mezykowski (1978) The influence of microwaves on genetic apparatus functions. Proc. Biol. Eff. E.M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki (Abstract).Google Scholar
  14. Barber, D. E. (1962) The reaction of luminous bacteria to microwave radiation exposures in the frequency range of 2608.7–3082.3 Mc. IRE Trans. Bio-Med. Electron. 9: 77.CrossRefGoogle Scholar
  15. Bawin, S. M., and W. R. Adey (1977) Calcium binding in cerebral tissues. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 305-313.Google Scholar
  16. Belkhode, M. L., D. L. Johnson, and A. M. Miro (1974a) Thermal and athermal effects of microwave radiation on the activity of glucose-6-phosphate dehydrogenase in human blood. Health Phys. 26: 45.CrossRefGoogle Scholar
  17. Belkhode, M. L., A. M. Miro, and D. L. Johnson (1974b) Thermal and athermal effects of 2.8 GHz microwaves on three human serum enzymes. J. Microwave Power 9: 23.Google Scholar
  18. Bender, M. A. (1967) Effects of radiation on chromosomes. In: Symposium on the Pacific Uses of Atomic Radiation. Rio de Janeiro, ORNL-P-3201, Oak Ridge National Laboratory.Google Scholar
  19. Berman, E., and H. Carter (1978) Mutagenic and reproductive tests in male rats exposed to 425 or 2450 MHz (CW) microwaves. Proc. Biol. Eff. E.M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki (Abstract).Google Scholar
  20. Berman, E., H. B. Carter, and D. House (1980) Tests of mutagenesis, and reproduction in male rats exposed to 2450 MHz (CW) microwaves. Bioelectromagnetics 1: 65.CrossRefGoogle Scholar
  21. Beyer, E. C., T. L. Pay, and E. T. Irwin, Jr. (1970) Developmental and genetic testing of Drosophila with 2450 MHz microwave radiation. In: Radiation Bio-effects Summary Report, January—December 1970, D. M. Hodge (ed.). HEW, PHS, BRH Publ. BRH/DBE 70–7 (December), p. 45.Google Scholar
  22. Bini, M., A. Checcucci, A. Ighesti, L. Millanta, N. Rubino, C. Camici, G. Marino, and G. Ramponi (1978) Analysis of the effects of microwave energy on enzymatic activity of lactate dehydrogenase (LDH). J. Microwave Power 13: 95.Google Scholar
  23. Blackman, C. F., Jr., and R. Tell (1972) Biological response to microwave irradiation: Bacteria. In: Twinbrook Research Laboratory Annual Report 1971. U.S. Environmental Protection Agency, Washington, D.C., p. 106.Google Scholar
  24. Blackman, C. F., S. G. Benane, C. M. Weil, and J. S. Ali (1975) Effects of nonionizing electromagnetic radiation on single-cell biologic systems. Ann. N.Y. Acad. Sci. 247: 352.CrossRefGoogle Scholar
  25. Blackman, C. F., M. C. Suries, and S. G. Benane (1976) The effects of microwave exposure on bacteria: Mutation induction. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 406-413.Google Scholar
  26. Brooks, A. L., and F. W. Lengemann (1967) Comparison of radiation-induced chromatid aberrations in the testes and bone marrow of the Chinese hamster. Radiat. Res. 32: 587.CrossRefGoogle Scholar
  27. Brown, G. H., and W. C. Morrison (1954) An exploration of the effects of strong radio-frequency fields on microorganisms in aqueous solutions. Food Technol. 8: 361.Google Scholar
  28. Carlson, J. G., and N. G. Harrington (1965) X-ray induced “stickiness” of the chromo-somes of the Chortophaga neuroblast in relation to dose and mitotic stage at treatment. Radiat. Res. 2: 84.CrossRefGoogle Scholar
  29. Carpenter, R. (1959) Inhibitory effect of microwave radiation on differentiation in Neurospora. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley, p. 289.Google Scholar
  30. Carpenter, R. L. (1965) Suppression of differentiation in living tissues exposed to microwave radiation. In: Digest 6th Int. Conf. Med. Electron. Biomed. Eng., Tokyo, p. 573.Google Scholar
  31. Carpenter, R. L., and E. M. Livstone (1971) Evidence for nonthermal effects of microwave radiation: Abnormal development of irradiated insect pupae. IEEE Trans. Microwave Theory Tech. MTT-19: 173.Google Scholar
  32. Carroll, D. E., and A. Lopez (1969) Lethality of radiofrequency energy upon microorganisms in liquid, buffered, and alcoholic food systems. J. Food Sci. 34: 320.CrossRefGoogle Scholar
  33. Cater, D. B., I. A. Silver, and D. A. Watkinson (1964) Combined therapy with 220 KV roentgen and 10 cm microwave heating in rat hepatoma. Acta Radiol. Ther. Phys. Biol. (NS) 2: 321.CrossRefGoogle Scholar
  34. Chen, K. C., and C. J. Lin (1978) A system for studying effects of microwaves on cells in culture. J. Microwave Power 13: 251.Google Scholar
  35. Chen, K. M., A. Samuel, and R. Hoopingavner (1974) Chromosomal aberrations of living cells induced by microwave radiation. Environ. Lett. 6: 37.CrossRefGoogle Scholar
  36. Chu, E. H. Y., N. H. Giles, and K Passano (1961) Types and frequencies of human chromosome aberrations induced by X rays. Proc. Natl. Acad. Sci. USA 47: 830.CrossRefGoogle Scholar
  37. Chukhlovin, B. A. (1965) The effect of SHF-UHF electromagnetic radiation on the immunobiological properties of the organism. Voen. Med. Zh. 7: 25.Google Scholar
  38. Chukhlovin, B. A. (1971) Changes in immunologic reactivity of the organism and in the properties of bacteria, virus, and simple animals. In: Influence of Microwave Radiation on the Organism of Man and Animals, I. R. Petrov (ed.). Meditsina Press, Leningrad, 1970 (NASA TT F-708, p. 88).Google Scholar
  39. Coate, W. H., and S. S. Hoo (1970) Plant cytogenetic study. In: Project Sanguine Biological Effects Test Program Pilot Studies, Hazelton Labs., Inc. Final report on Contract N0039–69-C-1572, AD 717: 408.Google Scholar
  40. Corelli, J. C., R. J. Gutmann, S. Kohazi, and J. Levy (1977) Effects of 2.6–4.0 GHz microwave radiation on E. coli B. J. Microwave Power 12: 141.Google Scholar
  41. Dardalhon, M., D. Averbeck, and A. J. Berteaud (1981) Studies on possible genetic effects of microwaves in procaryotic and eucaryotic cells. Radiat. Environ. Biophys. 20: 37.CrossRefGoogle Scholar
  42. Dessel, M. M., E. Bowersox, and W. Jester (1960) Bacteria in electronically cooked foods. J. Am. Diet. Assoc. 37: 230.Google Scholar
  43. Dumansky, Y. D., and V. F. Rudichenko (1976) Dependence of the functional activity of liver mitochondria on super-high frequency radiation. Gig. Sanit. 4: 16.Google Scholar
  44. Dutta, S. K., W. H. Nelson, C. F. Blackman, and D. J. Brusick (1979a) Lack of microbial genetic response to 2.45-GHz CW and 8.5–9.6-GHz pulsed microwaves. J. Microwave Power 14: 275.Google Scholar
  45. Dutta, S. K., M. A. Hossain, H. S. Ho, and C. F. Blackman (1979b) Effects of 8.6 GHz pulsed electromagnetic radiation on an Escherichia coli repair deficient mutant. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 76-95.Google Scholar
  46. Dutta, S. K., W. H. Nelson, C. F. Blackman, and D. J. Brusick (1980) Cellular effects in microbial tester strains caused by exposure to microwaves or elevated temperatures. J. Environ. Pathol. Toxicol. 3: 195.Google Scholar
  47. Elder, J. A., and J. S. Ali (1975) The effect of microwaves (2450 MHz) on isolated rat liver mitochondria. Ann. N.Y. Acad. Sci. 247: 251.CrossRefGoogle Scholar
  48. Elder, J. A., J. S. Ali, M. D. Long, and G. E. Anderson (1976) A coaxial air line microwave exposure system. 1. Respiratory activities of mitochondria irradiated at 2–4 GHz. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 352-365.Google Scholar
  49. Epstein, N., and H. Cook (1951) The effects of microwaves on the Rous N 1 fowl sarcoma virus, Br. J. Cancer 5: 244.CrossRefGoogle Scholar
  50. Evans, H. J. (1967) Actions of radiations on chromosomes. In: Scientific Basis of Medicine. Annual Reviews, Palo Alto, Calif., pp. 321-339.Google Scholar
  51. Fabian, F. W., and H. T. Graham (1933) Influence of high-frequency displacement currents on bacteria. J. Infect. Dis. 55: 76.CrossRefGoogle Scholar
  52. Faitel’berg-Blank, V. R., and G. Sivorinovs’kiy (1972) The effect of ultrasound and superhigh frequency (3 cm wavelength) electromagnetic field on liver and kidney mitochondrial oxidative phosphorylation. Fiziol. Zh. Akad. Nauk UKR SRS 18: 808.Google Scholar
  53. Fleming, H. (1944) Effect of high frequency fields on microorganisms. Electrical Eng. 63: 18.Google Scholar
  54. Frank-Kamenetskii, D. A. (1961) Plasma effects in semiconductors and biological effect of radiowaves. Dokl. Akad. Sci. USSR 136:476. English translation in Sou. Phys. Dokl. 6: 91.Google Scholar
  55. Friend, A. W., Jr., E. D. Finch, and H. P. Schwan (1975) Low frequency (1 Hz-10 MHz) electric field-induced changes in the shape and motility of amoebas. Science 187: 357.CrossRefGoogle Scholar
  56. Frings, H. (1952) Factors determining the effects of radio-frequency electromagnetic fields on insects and materials they infest. J. Econ. Entomol. 45: 396.Google Scholar
  57. Fröhlich, H. (1975) The extraordinary dielectric properties of biological materials and the action of enzymes. Proc. Natl. Acad. Sci. USA. 72: 4211.CrossRefGoogle Scholar
  58. Gilles, E. (1944) Lethal effects of ultrashort waves on micro-organisms. C. R. Soc. Biol. 123: 546.Google Scholar
  59. Goldblith, S. A., and D. I. Wang (1967) Effect of microwaves on Escherichia coli and Bacillus subtilis. Appl. Microbiol. 15: 1371.Google Scholar
  60. Grant, E. (1978) Determination of bound water in biologic materials from dielectric measurements. In: The Physical Basis of Electromagnetic Interactions with Biological Systems, L. S. Taylor and A. Y. Cheung (eds.). HEW Publ. (FDA) 78–8055, pp. 113-119.Google Scholar
  61. Green, D. R., Jr., F. S. Rosenbaum, and W. F. Pickard (1977) Biological effects of microwaves on the pupae of Tenebrio molitor. In: Biological Effects and Measurement of Radiofrequency/Microwaves, D. G. Hazard (ed.). HEW Publ. (FDA) 77–8026, pp. 253-262.Google Scholar
  62. Grundler, W., and F. Keilmann (1980) Frequency fine-tuning studies of microwave influenced yeast growth. Presented at the International Symposium on Electromagnetic Waves and Biology, Jouy-en-Josas, France.Google Scholar
  63. Grundler, W., F. Keilmann, and H. Fröhlich (1977) Resonant growth rate response of yeast cells irradiated by weak microwaves. Phys. Lett. 62A: 463.CrossRefGoogle Scholar
  64. Guy, A. W. (1977) A method for exposing cell cultures to EM fields under conditions of controlled temperature and field strength. Radio Sci. 12 (6S): 87.CrossRefGoogle Scholar
  65. Hamnerius, Y., H. Olofsson, A. Rasmuson, and B. Rasmuson (1979) A negative test for mutagenic action of microwave radiation in Drosophila melanogaster. Mutat. Res. 68: 217.CrossRefGoogle Scholar
  66. Hamrick, P. E. (1973) Thermal denaturation of DNA exposed to 2450 MHz CW microwave radiation. Radiat. Res. 56: 400.CrossRefGoogle Scholar
  67. Hamrick, P. E., and B. T. Butler (1973) Exposure of bacteria to 2450 MHz microwave radiation. J. Microwave Power 8: 227.Google Scholar
  68. Harrison, G. H., J. E. Robinson, D. McCulloch, and A. Y. Cheung (1980) Comparison of hyperthermal cellular survival in the presence or absence of 2.45 GHz microwave radiation. Presented at the International Symposium on Electromagnetic Waves and Biology, Jouy-en-Josas, France.Google Scholar
  69. Heller, J. H. (1970) Cellular effects of microwave radiation. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW PHS, BRH/DBE 70–2, p. 116.Google Scholar
  70. Heller, J. H., and G. H. Mickey (1961) Non-thermal effects of radiofrequency in biological systems. In: Digest of the 1961 International Conference on Medical Electronics, New York City, p. 152.Google Scholar
  71. Heller, J. H., and A. A. Teixeira-Pinto (1959) A new physical method of creating chromosomal aberrations. Nature (London) 183: 905.CrossRefGoogle Scholar
  72. Henderson, H. M., K. Hergenroeder, and S. S. Stuchly (1975) Effect of 2450 MHz microwave radiation on horseradish peroxidase. J. Microwave Power 10: 27.Google Scholar
  73. Hershberger, W. D. (1978) Microwave transmission through normal and tumor cells. IEEE Trans. Microwave Theory Tech. MW-26: 618.Google Scholar
  74. Hill, D. W., M. J. Hagmann, A. Riazi, O. P. Gandhi, L. M. Partlow, and L. J. Stensaas (1978) Effect of millimeter waves on bacteria and viruses. Proc. Biol. Eff. E.M. Waves. X IX Gen. Assembly. Int. Union Radio Sci., Helsinki (Abst.).Google Scholar
  75. Hirose, T., I. Abe, M. Kohno, T. Suziki, K. Oshima, and T. Okakura (1975) The use of microwave heating to control insects in cigarette manufacture. J. Microwave Power 10: 181.Google Scholar
  76. Huang, A. T., M. E. Engle, J. A. Elder, J. B. Kinn, and T. R. Ward (1977) The effect of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci. 12: 173.CrossRefGoogle Scholar
  77. Illinger, K. (1976) The attenuation function for biological fluids at millimeter and far-infrared wavelengths. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds). HEW Publ. (FDA) 77–8011, pp. 169-183.Google Scholar
  78. Iuinger, K. (1978) Millimeter wave and far-infrared absorption in biological systems. In: The Physical Basis of Electromagnetic Interaction with Biological Systems, L. S. Taylor and A. T. Cheung (eds.). HEW Publ. (FDA) 78–8055, pp. 43-64.Google Scholar
  79. Imig, C. J., and G. W. Searle (1962) Review of Work Conducted at State University of Iowa on Organisms exposed to 2450 me cw Microwave Irradiation. Griffiss AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  80. Ingram, M. (1969) Clinical and laboratory observations useful in estimating degree of radiation injury. In: A Study of Early Radiation-Induced Biological Changes as Indicators of Radiation Injury. FASEB, Bethesda.Google Scholar
  81. Ismailov, E. S. (1966) Effect of microwaves on Opalina ranarum. Vestn. Leningr. Univ. Ser. Biol. Geogr. Geol. 2: 147.Google Scholar
  82. Ismailov, E. S. (1977) Infrared spectra of erythrocyte ghosts in the region of the amide I and amide II bands on microwave irradiation. Biophysics 21:960 (translation of Biofizika 21: 940, 1976 ).Google Scholar
  83. Jacobs, S. E., M. J. Thornley, and P. Maurice (1950) The survival of bacteria in high-frequency electric fields. Proc. Soc. Appl. Bacteriol. 2: 161.CrossRefGoogle Scholar
  84. Janes, D. E., W. M. Leach, W. A. Mills, R. E. Moore, and M. L. Shore (1969) Effect of 2450 MHz microwaves on protein synthesis and on chromosomes in Chinese hamsters. Non-Ioniz. Radiat. 1: 125.Google Scholar
  85. Janiak, M., and S. Szmigielski (1977) Injury of cell membranes in normal and SV40-virus transformed fibroblasts exposed in vitro to microwave (2,450 MHz) or water-bath hyperthermia (43 deg C). In: Abstracts of the 1977 International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va.Google Scholar
  86. Jaski, T., and C. Süsskind (1961) Electromagnetic radiation as a tool in the life sciences. Science 133: 443.CrossRefGoogle Scholar
  87. Kadoum, A. M., H. J. Ball, and S. O. Nelson (1967a) Morphological abnormalities resulting from radiofrequency treatment of larvae of Tenebrio molitor. Ann. Entomol. Soc. Am. 60: 889.Google Scholar
  88. Kadoum, A. M., H. J. Ball, and L. E. Stetson (1967b) Metabolism in the yellow mealworm, Tenebrio molitor (Coleoptera tenbrionidae), following exposures to radiofrequency electric fields. Ann. Entomol. Soc. Am. 60: 1195.Google Scholar
  89. Kadoum, A. M., S. O. Nelson, and L. E. Stetson (1967c) Mortality and internal heating in radiofrequency-treated larvae of Tenebrio molitor. Ann. Entomol. Soc. Am. 60: 885.Google Scholar
  90. Kalant, H. (1959) Physiologic hazards of microwave radiation, survey of published literature. Can. Med. Assoc. J. 81: 575.Google Scholar
  91. Kamat, G. P., and J. W. Laskey (1970) Enzyme inactivation in vitro with 2450 MHz microwaves. In: Radiation Bio-effects Summary Report, January—December 1970. HEW, PHS, BRH Publ. BRH/DBE 70–7 (December), p. 26.Google Scholar
  92. Keilmann, F. (1978) Nonthermal microwave resonances in living cells. In: Coherence in Spectroscopy and Modern Physics, F. T. Arecchi, R. Bonifacio, and M. O. Scully (eds.). NATO Advanced Study Institute Series, Ser. B, Vol. 37, Plenum Press, New York, pp. 347–360.Google Scholar
  93. Kerova, N. I. (1964) The effect of super-high frequencies of an electromagnetic field on the activity of polynucleases and content of nucleic acid. In: Biological Effects of Ultrasound and Super-High-Ultra-High Frequency Electromagnetic Oscillations, A. A. Gorodetskiy (ed.). Kiev, p. 108 (Libr. Cong. ATD pp. 65–68, Washington, D.C. ).Google Scholar
  94. Key, M., and K. N. Charyulu (1976) The thermal, non-thermal and therapeutic effects of 2450 MHz radiation on mammalian cells. 24th Annual Meeting of the Radiation Research Society, San Francisco (Abst.).Google Scholar
  95. Kolodub, F. A., and G. I. Yevtushenko (1972) Biochemical aspects of the biological effect of a low-frequency pulsed electromagnetic field. Gig. Tr. Prof. Zabol. 6: 13 (JPRS 56583, 1972).Google Scholar
  96. Kulin, E. T., and E. I. Morozov (1964) The effect of decimeter radio-emission on the phagocytic functions of unicellular organisms. Dokl. Akad. Nauk SSSR 8: 329.Google Scholar
  97. Kulin, E. T., and E. I. Morozov (1965) Some features of the effect of electromagnetic fields of the SHF range on the phagocytic function of paramecia. Vestn. Akad. Navuk B SSR Ser. Biyal. Navuk 4: 91.Google Scholar
  98. Leach, W. M. (1976) On the induction of chromosomal aberrations by 2450 MHz microwave radiation. J. Cell Biol. 70(S): 387A (Abst.).Google Scholar
  99. Lechowich, R. V., L. R. Beuchat, K. I. Fox, and F. H. Webster (1969) Procedure for evaluating the effects of 2450 megahertz microwaves upon Streptococcus faecalis and Saccharomyces cerevisiae. Appl. Microbiol. 17: 106.Google Scholar
  100. Leonard, A., and G. DeKnudt (1967) Relation between the X-ray dose and the rate of chromosome rearrangements in spermatogonia of mice. Radial. Res. 32: 35.CrossRefGoogle Scholar
  101. Lindauer, G. A., L. M. Liu, G. W. Skewes, and F. J. Rosenbaum (1974) Further experiments seeking evidence of nonthermal biological effects of microwave radiation. IEEE Trans. Microwave Theory Tech. MTT-22: 790.Google Scholar
  102. Lindegren, D. (1972) The temperature influence on the spontaneous mutation rate. Hereditas 70: 165.CrossRefGoogle Scholar
  103. Liu, L. M., and S. F. Cleary (1977) Effects of microwave radiation on erythrocyte membranes. In: Abstracts of the 1977 International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va. (Abst.).Google Scholar
  104. Liu, L. M., F. J. Rosenbaum, and W. F. Pickard (1975) The relation of teratogenesis in Tenebrio molitor to the incidence of low-level microwaves. IEEE Trans. Microwave Theory Tech. MTT-23: 929.Google Scholar
  105. Luczak, M., S. Szmigielski, M. Janiak, M. Kolus, and E. deClerq (1976) Effect of microwaves on virus multiplication in mammalian cells. J. Microwave Power 11: 173.Google Scholar
  106. Lystov, V. N., and D. A. Frank-Kamenetskii (1965) Effect of centimeter radiowaves on vegetative cells, spores, and transforming DNA. Biofizika 10: 105 (English translation in Biophysics 10:114).Google Scholar
  107. McLees, B. D., and E. D. Finch (1971) The effects of radiofrequency radiation on regenerating hepatic tissue. In: Proc. DOD Electromagnetic Radiation Research Workshop, Bur. Med. Surg., Washington, D.C., p. 175.Google Scholar
  108. McLees, B. D., E. D. Finch, and M. L. Albright (1972) An examination of regenerating hepatic tissue subjected to radiofrequency irradiation. J. Appl. Physiol. 32: 78.Google Scholar
  109. McRee, D. I., G. K. Livingston, and G. MacNichols (1978) Incidence of sister chromatid exchange in bone marrow cells of the mouse following microwave exposure. In: Symposium on Electromagnetic Fields in Biological Systems, IEEE/IMPI, Ottawa, Canada, pp. 15-16 (abstract).Google Scholar
  110. Madson, R. A., J. T. Cordaro, R. L. Killer, and G. E. Voelker (1970) Effects of Microwaves on Bacteria in Frozen Foods. USAF School of Aerospace Medicine Rep. SAM-TR-70–87.Google Scholar
  111. Manikowska, E., J. M. Luciani, B. Servantie, P. Czerski, J. Obrenovitch, and A. Stahl (1979) Effects of 9.4 GHz microwave exposure on meiosis in mice. Experientia 35: 388.CrossRefGoogle Scholar
  112. Marha, K., J. Musil, and H. Tuha (1968) Electromagnetic Fields and the Living Environment. State Health Publishing House, Prague (Transi. SBN 911302–13–7, San Francisco Press, 1971 ).Google Scholar
  113. Marmor, J. B., N. Hahn, and G. M. Hahn (1977) Tumor cure and cell survival after localized radiofrequency heating. Cancer Res. 37: 879.Google Scholar
  114. Meisel, N. (1973) Microwave applications to food processing and food systems in Europe. J. Microwave Power 8: 143.Google Scholar
  115. Mendecki, J., E. Friedenthal, and C. Botstein (1976) Effects of microwave-induced local hyperthermia on mammary adenocarcinoma in C3H mice. Cancer Res. 36: 2113.Google Scholar
  116. Michaelson, S. M. (1970) Discussion following the paper “Effects of 2450 MHz microwave radiation on cultivated kangaroo rat cells”. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW Publ. BRH/DBE 70–2, p. 133.Google Scholar
  117. Michaelson, S. M. (1978) Biologic and pathophysiologic effects of exposure to microwaves. In: Microwave Bioeffects and Radiation Safety, M. A. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 55-94.Google Scholar
  118. Mickey, G. H. (1963) Electromagnetism and its effect on the organism. N.Y. State J. Med. 63: 1935.Google Scholar
  119. Miro, L., R. Loubiere, and A. Pfister (1974) Effects of microwaves on the cell metabolism of the reticulo-endothelial system. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 89-97.Google Scholar
  120. Mittler, S. (1976) Failure of 2- and 10-meter radio waves to induce genetic damage in Drosophila melanogaster. Environ. Res. 11: 326.CrossRefGoogle Scholar
  121. Mittler, S. (1977) Failure of chronic exposure to nonthermal FM radiowaves to mutate Drosophila. J. Hered. 68: 257.Google Scholar
  122. Moore, H. A., R. Raymond, M. Fox, and A. G. Galsky (1979) Low-intensity microwave radiation and the virulence of Agrobacterium tumefaciens strain B6 . Appl. Environ. Microbiol. 37: 127.Google Scholar
  123. Moressi, W. J. (1964) Mortality patterns of mouse sarcoma 180 cells resulting from direct heating and chronic microwave irradiation. Exp. Cell Res. 33: 240.CrossRefGoogle Scholar
  124. Nicols, W. W. (1966) Studies on the role of viruses in somatic mutation. Hereditas 55:1.Google Scholar
  125. Nyrop, J. E. (1946) A specific effect of high-frequency electric currents on biological objects. Nature (London) 157: 51.CrossRefGoogle Scholar
  126. Olsen, C. M. (1965) Microwaves inhibit bread mold. Food Eng. 37: 51.Google Scholar
  127. Olsen, C. M., C. L. Drake, and S. L. Bunch (1966) Some biological effects of microwave energy. J. Microwave Power 1: 45.Google Scholar
  128. Olsen, R. G. (1977) Insect teratogenesis in a standing wave irradiation system. Radio Sci. 12 (S): 199.CrossRefGoogle Scholar
  129. Overgaard, K., and J. Overgaard (1972) Investigations on the possibility of a thermic tumor therapy. II. Action of combined heat—roentgen treatment on a transplanted mouse mammary carcinoma. Eur. J. Cancer 8: 573.Google Scholar
  130. Pay, T. L., E. C. Beyer, and C. F. Reichelderfer (1972) Microwave effects on reproductive capacity and genetic transmission in Drosophila melanogaster. J. Microwave Power 7: 75.Google Scholar
  131. Pederson, P. D., Jr., and A. W. Blomquist (1967) Microwave Applications. Tech. Rep. AFTAL-TR-67–196. Air Force Armament Lab., Eglin AFB, Fla.Google Scholar
  132. Pratt, C. B., and C. Sheard (1935) The effects of intravenous injection into rabbits of strains of streptococci which have been exposed to the high-frequency field. Protoplasma 23: 24.CrossRefGoogle Scholar
  133. Presman, A. S. (1965) The effect of microwaves on living organisms and biological structures. Usp. Fiz. Nauk 86: 263.Google Scholar
  134. Presman, A. S., and S. M. Rappeport (1965) Effect of microwaves on the excitable system of paramecia. Byull. Eksp. Biol. Med. 4: 48.Google Scholar
  135. Presman, A. S., Y. I. Kamenskiy, and N. A. Levitina (1961) Biological effect of microwaves. Usp. Sovrem. Biol. 51: 84.Google Scholar
  136. Prince, J. E., L. H. Mori, J. W. Frazer, and J. C. Mitchell (1972) Cytologic aspect of RF radiation in the monkey. Aerosp. Med. 43: 759.Google Scholar
  137. Prohofsky, E. W., and K. C. Lu (1979) Resonant melting of the double helix and a possible strand separation and propulsion mechanism for enzymes. Biophys. J. 25: 183A.CrossRefGoogle Scholar
  138. Robe, K. (1966) Improved flavor of pasteurized products (cooked with microwave radiation). Food Process. Mark. 27: 84.Google Scholar
  139. Saito, M., and H. P. Schwan (1961) The time constants of pearl-chain formation. In: Biological Effects of Microwave Radiation, Vol. 1, M. F. Peyton (ed.). Plenum Press, New York, p. 85.Google Scholar
  140. Savage, J. R. K. (1971) Use and abuse of chromosomal aberrations as an indicator of genetic damage. Int. J. Environ. Stud. 1: 233.CrossRefGoogle Scholar
  141. Sawicki, W., and K. Ostrowski (1968) Non-thermal effect of microwave radiation in vitro on peritoneal mast cells of the rat. Am. J. Phys. Med. 47: 225.CrossRefGoogle Scholar
  142. Schwan, H. P. (1968) Radiation biology, medical applications and radiation hazards. In: Microwave Power Engineering, Vol. 2, E. C. Okress (ed.). Academic Press, New York, p. 213.Google Scholar
  143. Schwan, H. P., and G. M. Piersol (1954) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part I. Biophysical aspects. Am. J. Phys. Med. 33: 371.Google Scholar
  144. Searle, G. W., R. W. Dahlen, C. J. Imig, C. C. Wunder, J. D. Thomson, J. A. Thomas, and W. J. Moressi (1961) Effect of 2450 me microwaves in dogs, rats and larvae of the common fruit fly. In: Biological Effects of Microwave Radiation, Vol. 1, M. F. Peyton (ed.). Plenum Press, New York, p. 187.Google Scholar
  145. Sharp, J. C., and C. J. Paperiello (1971) The effects of microwave exposure on thymidine-H3 uptake in albino rats. Radiat. Res. 45: 434.CrossRefGoogle Scholar
  146. Sheridan, J. P., B. P. Gaber, F. Cavatorta, and P. E. Schoen (1979) Molecular level effects of microwaves on natural and model membranes: A Raman spectroscopic investigation. Presented at the joint meeting of USNC/URSI and the Bioelectromagnetics Society, Seattle (Abst.).Google Scholar
  147. Smolyanskaya, A. Z., and R. L. Vilenskaya (1973) Effects of millimeter-band electromag-netic radiation on the functional activity of certain genetic elements of bacterial cells. Usp. Fiz. Nauk 110: 571.CrossRefGoogle Scholar
  148. Stodolnik-Baranska, W. (1974) The effects of microwaves on human lymphocyte cultures. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, p. 189.Google Scholar
  149. Straub, K. D., and P. Carver (1975) Effects of electromagnetic fields on microsomal ATPase and mitochondrial oxidative phosphorylation. Ann. N.Y. Acad. Sci. 247: 292.CrossRefGoogle Scholar
  150. Suzuki, T., and K Oshima (1973) Applications of microwave power to the food industry in Japan. J. Microwave Power 8: 149.Google Scholar
  151. Syngayevskaya, V. A. (1970) Metabolic changes. In: Influence of Microwave Radiation on the Organism of Man and Animals, I. R. Petrov (ed.). Meditsina Press, Leningrad, p. 48 (NASA TT F-708).Google Scholar
  152. Szmigielski, M., M. Luczak, M. Bielec, M. Janiak, M. Kobus, W. E. Stewart II, and E. deClerq (1976) Effect of microwaves combined with interferon and/or interferon inducers (poly I—poly C) on development of sarcoma 180 in mice. J. Microwave Power 11: 174.Google Scholar
  153. Takashima, S. (1966) Studies on the effect of radio frequency waves on biological macromolecules. IEEE Trans. Biomed. Eng. BME-13: 28.Google Scholar
  154. Teixeira-Pinto, A. A., L. L. Nejelski, J. L. Cutler, and J. H. Heller (1960) The behavior of unicellular organisms in an electromagnetic field. Exp. Cell Res. 20: 548.CrossRefGoogle Scholar
  155. Tell, R. A. (1972) Microwave absorption characteristics of Drosophila melanogaster. In: Twinbrook Research Laboratory Annual Report 1971, EPA, Washington, D.C., p. 155.Google Scholar
  156. Tyazhelov, V. V., S. I. Alekseyev, and P. A. Grigor’ev (1979) Change in the conductivity of phospholipid membranes modified by alamethicin on exposure to a high frequency electromagnetic field. Biophysics 23:750 (translation of Biofizika 23: 732, 1978 ).Google Scholar
  157. Valtonen, E. J. (1966) The effects of microwave radiation on the cellular elements in the peritoneal fluid and peripheral blood of the rat. Acta Rheumatol. Scand. 12: 129.Google Scholar
  158. Valtonen, E. (1967) Observations on the fine structure of giant mast cells produced by microwave radiation of the peritoneal fluid. Z. Zellforsch. Mikrosk. Anat. 80: 322.CrossRefGoogle Scholar
  159. Van Ummersen, C. A., and F. C. Cogan (1970) Effects of microwave radiation on lens epithelial cells (summary). In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW, PHS, BRH/DBE 70–2, p. 122.Google Scholar
  160. Varma, M. M., and E. A. Traboulay, Jr. (1975) Biological effects of microwave radiation on the testes of Swiss mice. Experientia 31: 301.CrossRefGoogle Scholar
  161. Varma, M. M., and E. A. Traboulay, Jr. (1976) Evaluation of dominant lethal test and DNA studies in measuring mutagenicity caused by non-ionizing radiation. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 386-396.Google Scholar
  162. Varma, M. M., and E. A. Traboulay, Jr. (1977) Comparison of native and microwave irradiated DNA. Experientia 33: 1649.CrossRefGoogle Scholar
  163. Varma, M. M., E. L. Dage, and S. R. Joshi (1976) Mutagenicity induced by nonionizing radiation in Swiss male mice. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 397-405.Google Scholar
  164. Wald, N., A. C. Upton, V. T. Jenkins, and W. H. Borges (1964) Radiation-induced mouse leukemia: Consistent occurrence of an extra and a marker chromosome. Science 143: 810.CrossRefGoogle Scholar
  165. Ward, T. R., J. W. Allis, and J. A. Elder (1975) Measure of enzymatic activity coincident with 2450 MHz microwave exposure. J. Microwave Power 10: 315.Google Scholar
  166. Webb, S. J. (1975) Genetic continuity and metabolic regulation as seen by the effects of various microwave and black light frequencies on these phenomena. Ann. N.Y. Acad. Sci. 247: 327.CrossRefGoogle Scholar
  167. Webb, S. J., and A. D. Booth (1969) Absorption of microwaves by microorganisms. Nature (London) 222: 1199.CrossRefGoogle Scholar
  168. Webb, S. J., and D. D. Dodds (1968) Inhibition of bacterial cell growth by 136 gc microwaves. Nature (London) 218: 374.CrossRefGoogle Scholar
  169. Whitney, W. K., S. O. Nelson, and H. H. Walkden (1961) Effects of high frequency electric fields on certain species of stored-grain insects. U.S. Dep. Agric. Mark. Res. Rep. No. 453, p. 52.Google Scholar
  170. Wiktor-Jedrzejczak, W., A. Ahmed, P. Czerski, W. M. Leach, and K. W. Sell (1976) Microwaves (2450 MHz) stimulate maturation of B lymphoid cells in spleens of exposed mice. Proc. 1976 Annu. Meet. IURS, Amherst (Abst.).Google Scholar
  171. Wildervanck, A., K. G. Wakim, J. F. Herrick, and F. H. Krusen (1959) Certain experimental observations on a pulsed diathermy machine. Arch. Phys. Med. 40: 45.Google Scholar
  172. Yao, K. T. S. (1976) Cytogenetic consequences of microwave incubation of mammalian cells in culture. Genetics 83 (suppl.): 584A.Google Scholar
  173. Yao, K. T. S. (1978) Microwave radiation-induced chromosomal aberrations in corneal epithelium of Chinese hamsters. J. Hered. 69: 409.Google Scholar
  174. Yao, K. T. S., and M. M. Jiles (1970) Effects of 2450 MHz microwave radiation on cultivated kangaroo rat cells. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). HEW, PHS, BRH/DBE 70–2, p. 123.Google Scholar
  175. Yerushalmi, A. (1975) Cure of a solid tumor by simultaneous administration of microwaves and X-ray irradiation. Radiat. Res. 64: 602.CrossRefGoogle Scholar
  176. Zalyubovskaya, N. P. (1973) Reactions of living organisms to exposure to millimeter-band electromagnetic waves. Usp. Fiz. Nauk 110: 574.CrossRefGoogle Scholar
  177. Zufarov, K. A., and V. B. Shnaivais (1970) Response of white mice liver cell mitochondria from electromagnetic field irradiation. Tsitologiya 12: 146.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations