Biochemistry of Halogenated Neuroactive Amines

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

Included for discussion in this chapter will be halogenated analogues of amine neurotransmitters, several of which analogues function as receptor agonists, and halogenated amines that can affect neuronal function in other, less direct ways. The medicinal and pharmacological importance of both peripheral and central nervous system (CNS)-acting analogues will be reviewed. Of obvious importance are compounds that can modulate CNS functions, either to the benefit or detriment of the subject. Accordingly, the role of halogenated analogues in the development of psychotherapeutic and psychotomimetic drugs will be discussed. Analogues that have peripheral cardiovascular action also will receive special attention.

Keywords

Monoamine Oxidase Adrenergic Receptor Noradrenergic Neuron Sympathomimetic Amine Fluorine Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adejare, A., Gusovsky, F., Padgett, W., Creveling, C. R., Daly, J. W., and Kirk, K. L., 1988. Syntheses and adrenergic activities of ring-fluorinated epinephrines, J. Med. Chem. 31: 1972–1977.PubMedCrossRefGoogle Scholar
  2. Ahlquist, R. P., 1948. A study of adrenotropic receptors, Am. J. Physiol. 153: 586–600.PubMedGoogle Scholar
  3. Barnes, D. M., 1987. Biological issues in schizophrenia, Science 235: 430–433.PubMedCrossRefGoogle Scholar
  4. Bey, P., Fozard, J., Lacoste, J. M., McDonald, I. A., Zreika, M., and Palfreyman, M. G., 1984. (E)-2-(3,4-Dimethoxyphenyl)-3-fluoroallylamine: A selective, enzyme-activated inhibitor of type B monoamine oxidase, J. Med. Chem. 27: 9–10.Google Scholar
  5. Cantacuzene, D., Kirk, K. L., McCulloh, D. H., and Creveling, C. R., 1979. Effect of fluorine substitution on the agonist specificity of norepinephrine, Science 204: 1217–1219.PubMedCrossRefGoogle Scholar
  6. Carlsson, A., 1978. Antipsychotic drugs, neurotransmission and schizophrenia, Am. J. Psychiat. 135: 164–173.Google Scholar
  7. Chieuh, C. C., Zukowska-Crojec, Z., Kirk, K. L., and Kopin, I., 1983. 6-Fluorocatecholamines as false adrenergic neurotransmitters, J. Pharmacol. Exp. Ther. 225: 529–533.Google Scholar
  8. Clark, M. T., Adejare, A., Shams, G., Feller, D. R., and Miller, D. D., 1987. 5-Fluoro-and 8-fluorotrimetoquinol: Selective ß2-adrenoceptor agonists, J. Med. Chem. 30: 86–90.Google Scholar
  9. Clemens, J. A., Flaugh, M. E., Parli, J., and Sawyer, B. D., 1980. Inhibition of luteinizing hormone release and ovulation by 6-chloro-and 6-fluoromelatonin, Neuroendocrinology 30: 83–87.PubMedCrossRefGoogle Scholar
  10. Corner, W. T., Matier, W. L., and Amer, M. S., 1981. Antihypertensive agents, in Burger’s Medicinal Chemistry, Part III ( M. E. Wolff, ed.), John Wiley and Sons, New York, pp. 285–337.Google Scholar
  11. Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S., 1987a. 5,6-Dihydroxytryptamine, a serotonergic neurotoxin, is formed endogenously in the rat brain, Brain Res. 403: 7–14.Google Scholar
  12. Commins, D. L., Axt, K. J., Vosmer, G., and Seiden, L. S., 1987b. Endogenously produced 5,6-dihydroxytryptamine may mediate the neurotoxic effects of para-chloroamphetamine, Brain Res. 419: 253–261.PubMedCrossRefGoogle Scholar
  13. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1986. The Biochemical Basis of Neuropharmacology, 5th ed., Oxford University Press, New York, pp. 315–351.Google Scholar
  14. Costa, J. L., Joy, D. C., Maher, D. M., Kirk, K. L., and Hui, S. W., 1978. Fluorinated molecule as a tracer: Difluoroserotonin in human platelets mapped by electron energy-loss spectroscopy, Science 200: 537–539.PubMedCrossRefGoogle Scholar
  15. Costa, J. L., Dobson, C. M., Fay, D. D., Kirk, K. L., Poulsen, F. M., Valeri, C. R., and Vecchione, J. J., 1981. Nuclear magnetic resonance studies of amine storage in pig platelets, FEES Lett. 136: 325–328.CrossRefGoogle Scholar
  16. Costa, J. L., Kirk, K. L., and Stark, H., 1982. Uptake of 6-fluoro-5-hydroxytryptamine and 4,6-difluoro-5-hydroxytryptamine into releasable and nonreleasable compartments of human platelets, Br. J. Pharmacol. 75: 237–242.PubMedCrossRefGoogle Scholar
  17. Coutts, R. T., Rao, T. S., Baker, G. B., Micetich, R. G., and Hall, T. W. E., 1987. Neurochemical and neuropharmacological properties of 4-fluorotranylcypromine, Cell. Mol. Neurobiol. 7: 271–290.CrossRefGoogle Scholar
  18. Daly, J. W., Padgett, W., Creveling, C. R., Cantacuzene, D., and Kirk, K. L., 1981. Cyclic AMP-generating systems: Regional differences in activation by adrenergic receptors in rat brain, J. Neurosci. 1: 49–59.PubMedGoogle Scholar
  19. DeBernardis, J. F., Kerkman, D. J., Winn, M., Bush, E. N., Arendsen, D. L., McClellan, W. J., Kyncl, J. J., and Basha, F. Z., 1985. Conformationally defined adrenergic agents. 1. Design and synthesis of novel a2 selective adrenergic agents: Electrostatic repulsion based conformational prototypes, J. Med. Chem. 28: 1398–1404.PubMedCrossRefGoogle Scholar
  20. Douglas, W. W., 1985. Histamine and 5-hydroxytryptamine (serotonin) and their antagonists, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 7th ed. ( A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 605–638.Google Scholar
  21. Dubocovich, M. L., and Takahashi, J. S., 1987. Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina, Proc. Natl. Acad. Sci. USA 84: 3916–3920.PubMedCrossRefGoogle Scholar
  22. Eisenhofer, G., Hovevey-Sion, D., Kopin, I. J., Miletich, R., Kirk, K. L., Finn, R., and Goldstein, D. S., 1988. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: False neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues, J. Pharmacol. Exp. Ther. 248: 419–427.Google Scholar
  23. Elliot, A. J., 1982. The role of fluorine in the development of central nervous system agents, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, Amsterdam, pp. 55–74.Google Scholar
  24. Fosdick, L. S., Fancher, O., and Urbach, K. F., 1946. Pressor amines containing nuclear chlorine and fluorine, J. Am. Chem. Soc. 68: 840–843.PubMedCrossRefGoogle Scholar
  25. Fowler, C. J., and Ross, S. B., 1984. Selective inhibitors of monoamine oxidase A and B: Biochemical, pharmacological, and clinical properties, Med. Res. Rev. 4: 323–358.PubMedCrossRefGoogle Scholar
  26. Fuller, R. W., 1978. Structure-activity relationships among the halogenated amphetamines, Ann. N.Y. Acad. Sci. 305: 147–159.PubMedCrossRefGoogle Scholar
  27. Fuller, R. W., and Molloy, B. B., 1976. The effect of aliphatic fluorine on amine drugs, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.C., pp. 77–98.Google Scholar
  28. Ganellin, C. R., 1982. Chemistry and structure-activity relationships of drugs acting at histamine receptors, in Pharmacology of Histamine Receptors ( C. R. Ganellin and M. E. Parsons, eds.), John Wright and Sons, Bristol, pp. 10–102.Google Scholar
  29. Glennon, R. A., 1987. Central serotonin receptors as targets for drug research, J. Med. Chem. 30: 1–12.PubMedCrossRefGoogle Scholar
  30. Goldberg, L. I., Kohli, J. D., Cantacuzene, D., Kirk, K. L., and Creveling, C. R., 1980. Effects of ring fluorination on the cardiovascular actions of dopamine and norepinephrine in the dog, J. Pharmacol. Exp. Ther. 213: 509–513.PubMedGoogle Scholar
  31. Gottfried-Anacker, J., Preussmann, R., Eisenbrand, G., and Janzowski, C., 1985. Fluorosubstituted N-nitrosamines. 8. N-Nitrosodibutylamine and w-fluorinated analogues: In vivo metabolism in relation to the induction of urinary bladder cancer in the rat, Carcinogenesis 6: 1559–1564.PubMedCrossRefGoogle Scholar
  32. Kaiser, C., and Setter, P. E., 1981. Antipsychotic drugs, in Burger’s Medicinal Chemistry, Part III ( M. E. Wolff, ed.), John Wiley and Sons, New York, pp. 859–980.Google Scholar
  33. Kaiser, C., Colella, D. F., Pavloff, A. M., and Wardell, J. R., Jr., 1974. Adrenergic agents. 2. Synthesis and potential ß-adrenergic agonist activity of some ring-chlorinated relatives of isoproterenol, J. Med. Chem. 17: 1071–1075.PubMedCrossRefGoogle Scholar
  34. Kinemuchi, H., Arai, Y., Toyoshima, Y., Tadona, T., and Kisara, K., 1987. Studies on 5-fluoro-a-methyltryptamine and p-chloro-ß-methylphenethylamine: Determination of the MAO A or MAO B selective inhibition in vitro, Jpn. J. Pharmacol. 46: 197–199.CrossRefGoogle Scholar
  35. Kirk, K. L., 1976a. Photochemistry of diazonium salts. 4. Synthesis of ring-fluorinated tyramines and dopamines, J. Org. Chem. 41: 2373–2376.PubMedCrossRefGoogle Scholar
  36. Kirk, K. L., 1976b. Synthesis of ring-fluorinated serotonins and melatonins, J. Heterocycl. Chem. 13: 1253–1256.CrossRefGoogle Scholar
  37. Kirk, K. L., and Cohen, L. A., 1976. Biochemistry of ring-fluorinated imidazoles, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series, No. 28, American Chemical Society, Washington, D.C., pp. 23–36.Google Scholar
  38. Kirk, K. L., and Creveling, C. R., 1984. The chemistry and biology of ring-fluorinated biogenic amines, Med. Res. Rev. 4: 189–220.PubMedCrossRefGoogle Scholar
  39. Kirk, K. L., Cantacuzene, D., Nimitkitpaizan, Y, McCulloh, D., Padgett, W. L., Daly, J. W., and Creveling, C. R., 1979. Synthesis and biological properties of 2, 5, and 6-fluoronorepinephrine, J. Med. Chem. 22: 1493–1497.PubMedCrossRefGoogle Scholar
  40. Kirk, K. L., Cantacuzene, D., Collins, B., Chen, G. T., and Creveling, C. R., 1982. The synthesis and adrenergic agonist properties of ring-fluorinated isoproterenols, J. Med. Chem. 25: 680–684.PubMedCrossRefGoogle Scholar
  41. Kirk, K. L., Olubajo, O., Buchhold, K., Lewandowski, G. A., Gusovsky, F., McCulloh, D., Daly, J. W., and Creveling, C. R., 1986. Synthesis and adrenergic activity of ring-fluorinated phenylephrines, J. Med. Chem. 29: 1982–1988.PubMedCrossRefGoogle Scholar
  42. Kirk, K. L., Adejare, A., Calderon, S., Chen, G., Furlano, D. C., and Gusovsky, F., 1988. Molecular basils for adrenergic selectivities of fluorinated biogenic amines, in Progress in Catecholamine Research, Part A: Basic Aspects and Peripheral Mechanisms ( A. Dahlström, R. H. Belmaker, and M. Sandler, eds.), Alan R. Liss, New York, pp. 393–396.Google Scholar
  43. Knoll, J., 1979. (-)-Deprenyl-the MAO inhibitor without the “cheese effect,” Trends Neurosci. 2:111–113.Google Scholar
  44. Lee, F. G. H., Dickson, D. E., Suzuki, J., Zirnis, A., and Manian, A. A., 1973. Synthesis of 5,7- and 6,7-disubstituted tryptamines and analogues (1), J. Heterocycl. Chem. 10: 649–654.CrossRefGoogle Scholar
  45. Levy, B., and Ahlquist, R. P., 1961. An analysis of adrenergic blocking activity, J. Pharmacol. Exp. Ther. 133: 202–210.PubMedGoogle Scholar
  46. Lyles, G. A., Marshall, C. M. S., McDonald, I. A., Bey, P., and Palfreyman, M. G., 1987. Inhibition of rat aorta semicarbazide-sensitive amine oxidase by 2-phenyl-3-haloallylamines and related compounds, Biochem. Pharmacol. 36: 2847–2853.PubMedCrossRefGoogle Scholar
  47. Martin, J. E., Kirk, K. L., and Klein, D. C., 1980. Effects of 6-hydroxy-, 6-fluoro-, and 4,6-difluoromelatonin on the in vitro pituitary response to luteinizing hormone-releasing hormone, Endocrinology 106: 398–401.PubMedCrossRefGoogle Scholar
  48. McDonald, I. A., Lacoste, J. M., Bey, P., Wagner, J., Zreika, M., and Palfreyman, M. B., 1984. (E)-ß-(Fluoromethylene)-m-tyrosine: A substrate for aromatic L-amino acid decarboxylase liberating an enzyme-activated irreversible inhibitor of monoamine oxidase, J. Am. Chem. Soc. 106: 3354–3356.Google Scholar
  49. McDonald, I. A., Lacoste, J. M., Bey, P., Palfreyman, M. G., and Zreika, M., 1985. Enzyme-activated irreversible inhibitors of monoamine oxidases: Phenylallyalamine structure-activity relationships, J. Med. Chem. 28: 186–193.PubMedCrossRefGoogle Scholar
  50. Miller, D. D., Clark, M. T., Adejare, A., Neidert, K., Hamada, A., Shams, G., Romstedt, K. J., and Feller, D. R., 1988. Fluorotetrahydroisoquinolines as adrenergic and antithrombotic agents, in Progress in Catecholamine Research, Part A: Basic Aspects and Peripheral Mechanisms ( A. Dahlström, R. H. Belmaker, and M. Sandler, eds.), Alan R. Liss, New York, pp. 403–407.Google Scholar
  51. Mislankar, S. G., Gildersleeve, D. L., Wieland, D. M., Massin, C C., Mulholland, G. K., andToorongian, S. A., 1988. [18F]6-Fluorometaraminol: A radiotracer for in vivo mapping of adrenergic nerves of the heart, J. Med. Chem. 31: 362–366.Google Scholar
  52. Mueller, A. C., Kirk, K. L., Hoffer, B. J., and Dunwiddie, T. V., 1983. Noradrenergic responses in rat hippocampus: Electrophysiological actions of direct and indirect-acting sympathomimetics in the in vitro slice, J. Pharmacol. Exp. Ther. 223: 599–605.Google Scholar
  53. Nimit, Y., Cantacuzene, D., Kirk, K. L., Creveling, C. R, and Daly, J. W., 1980. The binding of fluorocatecholamines to adrenergic and dopaminergic receptors in rat brain membranes, Life Sci. 27: 1577–1585.PubMedCrossRefGoogle Scholar
  54. Palfreyman, M. G., McDonald, I. A., Fozard, J. R., Mely, Y., Sleight, A. J., Zreika, M., Wagner, J., Bey, P., and Lewis, P. J., 1985. Inhibition of monoamine oxidase selectively in brain monoamine nerves using the bioprecursor (E)-ß-fluoromethylenem-tyrosine (MDL 72394), a substrate for aromatic t,-amino acid decarboxylase, J. Neurochem. 45: 1850–1860.PubMedCrossRefGoogle Scholar
  55. Palfreyman, M. G., Bey, P., and Sjoerdsma, A., 1987. Enzyme-activated/mechanism-based inhibitors, Essays Biochem. 23: 28–81.PubMedGoogle Scholar
  56. Pert, C. B., Danks, J. A., Channing, M. A., Eckelman, W. C., Larson, S. M., Bennet, J. M., Burke, T. R., Jr., and Rice, K. C., 1984. 3-[18F]Acetylcyclofoxy: A useful probe for the visualization of opiate receptors in living animals, FEBS Lett. 177: 281–286.Google Scholar
  57. Powell, C. E., and Slater, I. H., 1958. Blocking of inhibitory adrenergic receptors by a dichloro analogue of isoproterenol, J. Pharmacol. Exp. Ther. 122: 480–488.PubMedGoogle Scholar
  58. Reppert, S. M., Weaver, D. R., Rivkees, S. A., and Stopa, E. G., 1988. Putative melatonin receptors in a human biological clock, Science 242: 78–81.PubMedCrossRefGoogle Scholar
  59. Rudnick, G., Kirk, K. L., Fishkes, H., and Schuldiner, S., 1989. Zwitterionic and anionic forms of a serotonin analogue as transport substrates, J. BioL Chem. 264: 14865–14868.PubMedGoogle Scholar
  60. Schiemann, G., and Winkelmüller, W., 1932. Aromatic fluorine compounds XII. Fluorinated amino acids and their derivatives. 3. The first fluorotyrosine and fluorothyronine, also phenethylamines fluorinated on the nucleus, J. Prakt. Chem. 135: 101–127.CrossRefGoogle Scholar
  61. Smith, F. A., 1970. Biological properties of selected fluorine-containing organic compounds, in Handbook of Experimental Pharmacology, Vol. XX, Pharmacology of Fluorides, Part 2 ( F. A. Smith, ed.), Springer-Verlag, Heidelberg, pp. 252–408.Google Scholar
  62. Stone, E. A., Platt, J. E., Herrera, A. S., and Kirk, K. L., 1986. Effect of repeated restraint stress, desmethylimipramine, or adrenocorticotropin on the alpha and beta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices, J. Pharmacol. Exp. Ther. 237: 702–707.PubMedGoogle Scholar
  63. Thakker, D. R., Kirk, K. L., and Creveling, C. R., 1982. Enzymatic 0-methylation of norepinephrine: Studies on the site of methylation by high pressure liquid chromatography, in Biochemistry of 5-Adenosylmethionine and Related Compounds ( E. Vodin, R. T. Borchardt, and C. R. Creveling, eds.), Macmillan, London, pp. 473–477.Google Scholar
  64. Thakker, D. R., Boehlert, C., Kirk, K. L., Antkowiak, R., and Creveling, C. R., 1986. Regioselectivity of catechol O-methyltransferase. The effect of pH on the site of O-methylation of fluorinated norepinephrines, J. Biol. Chem. 261: 178–184.PubMedGoogle Scholar
  65. Thakker, D. R., Boehlert, C., Kirk, K. L., and Creveling, C. R., 1988. Interaction of fluorinated catecholamines with catechol 0-methyltransferase, in Progress in Catecholamine Research, Part A: Basic Aspects and Peripheral Mechanisms ( A. Dahlström, R. H. Belmaker, and M. Sandler, eds.), Alan R. Liss, New York, pp. 397–402.Google Scholar
  66. Triggle, D. J., 1981. Adrenergics: Catecholamines and related agents, in Burger’s Medicinal Chemistry, Part III ( M. E. Wolff, ed.), John Wiley and Sons, New York, pp. 225–283.Google Scholar
  67. Vakkuri, O., Lamsa, E., Rahkamaa, E., Ruotsalainen, R., and Leppaluoto, J., 1984. Iodinated melatonin: Preparation and characterization of the molecular structure by mass and ‘H NMR spectroscopy, Anal. Biochem. 142: 284–289.PubMedCrossRefGoogle Scholar
  68. Vaughan, M. K., Richardson, B. A., Petterborg, L. J., Vaughan, G. M., and Reiter, R. J., 1986. Reproductive effects of 6-chloromelatonin implants and/or injections in male and female Syrian hamsters (mesocricetus auratis), J. Reprod. Fert. 78: 381–387.CrossRefGoogle Scholar
  69. Weaver, D. R., Namboodiri, A. M. A., and Reppert, S. M., 1988. Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain, FEBS Lett. 228: 123–127.PubMedCrossRefGoogle Scholar
  70. Weiner, N., 1985a. Norepinephrine, epinephrine, and the sympathomimetic drugs, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 7th ed. ( A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 145–180.Google Scholar
  71. Wiener, N., 1985b. Drugs that inhibit adrenergic nerves and block adrenergic receptors, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 7th ed. ( A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 181–214.Google Scholar
  72. Williams, C. H., 1973. Monoamine oxidase—I. Specificity of some substrates and inhibitors, Biochem. Pharmacol. 23: 615–628.CrossRefGoogle Scholar
  73. Zeynek, 1921. Preparation of chloro-and bromotyrosine and analogues tyramines, Z. Biol. Chem. 114: 275–285.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations