Halogenated Analogues of Products of the Arachidonic Acid Cascade: Prostaglandins, Thromboxanes, and Leukotrienes

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

The eicosanoids are a group of C-20 unsaturated acids that have important roles in the regulation of such physiological functions as fertility control and induction of labor, regulation of blood platelet aggregation, gastric acid secretion, stimulation of smooth muscle activity, and inflammation response. Since the initial isolation and identification of prostaglandins from sheep seminal vesicle glands and from human semen (PGF2α and PGE, respectively) in the 1950s by Bergström and Sjövall [Bergström et al., 1963; reviewed by von Euler and Eliasson (1963)], a diverse series of acids have been identified. These include the primary prostaglandins and prostacyclins, thromboxanes, and unsaturated eicosanoic acids having perhydroxyl and hydroxyl substitution (leukotrienes). These compounds, collectively named eicosanoids, are derived enzymatically from C-20 acids, most notably arachidonic acid, as shown in Fig. 4-1 (the “arachidonic acid cascade”). A recent review of the biosynthesis, nomenclature, and physiological role of eicosanoids is provided by Moore (1985).

Keywords

Methyl Ester Arachidonic Acid Gastric Acid Secretion Arachidonic Acid Cascade Enol Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroniz, C. E., Gallina, J., Martinez, E., Muchowski, J. M., Velarde, E., and Rooks, W. H., 1978. Synthesis of ring halogenated prostagladins (1), Prostaglandins 16: 47–65.PubMedGoogle Scholar
  2. Axen, U. F., 1977. 2,2-Difluoro-16-phenoxy-PGF2 analogues, U.S. Patent 4, 001, 300.Google Scholar
  3. Baker, B. J., Okuda, R. K., Yu, P. T. K., and Scheuer, P. J., 1985. Punaglandins: Halogenated antitumor eicosanoids from the octacoral Telesto riisei, J. Am. Chem. Soc. 107: 2976–2977.CrossRefGoogle Scholar
  4. Bannai, K., Toru, T., Oba, T., Tanaka, T., Okamura, N., Watanabe, K., Hazato, A., and Kurozumi, S., 1983a. Halogenation of PGIz enol ether with N-halosuccinimide: Synthesis of new stable PGIz analogues, 5-chloro-and 5,7-dichloro-PGI2, Tetrahedron Lett. 23: 3707–3710.CrossRefGoogle Scholar
  5. Bannai, K., Toru, T., Oba, T., Tanaka, T., Okamura, N., Watanabe, K., Hazato, A., and Kurozumi, S., 1983b. Synthesis of chemically stable prostacyclin analogues, Tetrahedron 39: 3807–3819.CrossRefGoogle Scholar
  6. Barnette, W. E., 1984. The synthesis and biology of fluorinated prostacyclins, Crit. Rev. Biochem. 15: 201–235.CrossRefGoogle Scholar
  7. Bergstrom, S., Ryhage, R., Samuelsson, B., and Sjövall, J., 1963. Prostaglandins and related factors, J. Biol. Chem. 238: 3555–3564.Google Scholar
  8. Filler, R., and Naqvi, S. M., 1982. Fluorine in biomedicinal chemistry. An overview of recent advances and selected topics, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo; Elsevier Biomedical Press, Amsterdam, pp. 1–32.Google Scholar
  9. Fried, J., Mitra, D. K., Nagarajan, M., and Mehrotra, M. M., 1980. 10,10-Difluoro-13dehydroprostacyclin: A chemically and metabolically stabilized potent prostaglandin, J. Med. Chem. 23: 234–237.Google Scholar
  10. Fried, J., Hallinan, E. A., and Szwedo, M. J., Jr., 1984. Synthesis and properties of 7,7-difluoro derivatives of the 2,6-dioxa[3.1.1]bicycloheptane ring system present in thromboxane A2, J. Am. Chem. Soc. 106: 3871–3892.CrossRefGoogle Scholar
  11. Fukushima, M., and Kato, T., 1985. Antitumor marine eicosanoids: Clavulones and punaglandins, Adv. Prostaglandin Thromboxane Leukotriene Res. 15: 415–418.Google Scholar
  12. Greico, P. A., Williams, E., and Sugahara, T., 1979a. Ring-fluorinated prostaglandins: Total synthesis of (+)-lOa-fluoro prostaglandin Fza methyl ester, J. Org. Chem. 44: 2194–2199.CrossRefGoogle Scholar
  13. Greico, P. A., Sugahara, T., Yokoyama, Y., and Williams, E., 1979b. Fluoroprostaglandins: Synthesis of (+)-l0ß-fluoro prostaglandin Fla methyl ester, J. Org. Chem. 44: 2189–2194.CrossRefGoogle Scholar
  14. Greico, P. A., Owens, W., Wang, C.-L. J., Williams, E., and Schillinger, W. J., 1980a. Fluoroprostaglandins: Synthesis and biological evaluation of the methyl esters of (+)-12fluoro-, (—)-ent-12-fluoro-, (+)-15-epi-fluoro-, and (—)-ent-15-epi-fluoroprostaglandin Fla, J. Med. Chem. 23: 1072–1077.CrossRefGoogle Scholar
  15. Greico, P. A., Schillinger, W. J., and Yokoyama, Y, 1980b. C(14)-Fluorinated prostaglandins: Synthesis and biological evaluation of the methyl esters of (+)-14-fluoro-, (+)-15-epi-14- fluoro-, (+)-13(E)-14-fluoro-, and (+)-13(E)-15-epi-14-fluoro-prostaglandin Fla, J. Med. Chem. 23: 1077–1083.CrossRefGoogle Scholar
  16. Greico, P. A., Takigawa, T., and Vedananda, T. R., 1985. Fluoroprostaglandins: Total synthesis of (+)-13-fluoroprostaglandin Fla methyl ester, J. Org. Chem. 50: 3111–3115.CrossRefGoogle Scholar
  17. Hatano, Y., Kohli, J. D., Goldberg, L. I., Fried, J., and Mehrotra, M. M., 1980. Vascular relaxing activity and stability of 10,10-difluoro-13,14-dehydroprostacyclin, Proc. Natl. Acad. Sci. USA 77: 6846–6850.PubMedCrossRefGoogle Scholar
  18. Honda, A., Mori, Y., Iguchi, K., and Yamada, Y., 1987. Antiproliferative and cytotoxic effects of newly discovered halogenated coral prostanoids from the Japanese stolonifer Clavularia viridis on human myeloid leukemia cells in culture, Mol. Pharmacol. 32: 530–535.PubMedGoogle Scholar
  19. Honda, A., Mori, Y., Iguchi, K., and Yamada, Y., 1988. Structure requirements for antiproliferative and cytotoxic activities of marine coral prostanoids from the Japanese stolonifer Clavularia viridis against human myeloid leukemia cells in culture, Prostaglandins 36: 621–630.PubMedGoogle Scholar
  20. Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y., 1985. Chlorovulones, new halogenated marine prostanoids with an antitumor activity from the stolonifer Clavularia viridis Quoy and Gaimard, Tetrahedron Lett. 26: 5787–5790.CrossRefGoogle Scholar
  21. Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y., 1986. Bromovulone I and iodovulone I, unprecedented brominated and iodinated marine prostanoids with antitumor activity isolated from the Japanese stolonifer Clavularia viridis Quoy and Gaimard, J. Chem. Soc. 1986: 981–982.Google Scholar
  22. Kwok, P.-Y., Muellner, F. W., Chen, C.-K., and Fried, J., 1987a. Total synthesis of 7,7-, 10,10-, and 13,13-difluoroarachidonic acids, J. Am. Chem. Soc. 109: 3684–3692.CrossRefGoogle Scholar
  23. Kwok, P.-Y., Muellner, F. W., and Fried, J., 1987b. Enzymatic conversions of 10,10difluoroarachidonic acid with PGH synthase and soybean lipoxygenase, J. Am. Chem. Soc. 109: 3692–3698.CrossRefGoogle Scholar
  24. Loge, O., and Radüchel, B., 1984. Gastrointestinal properties of nocloprost, a stable prostaglandin E2 analogue, Naunyn-Schmiedeberg’s Arch. Pharmacol., Suppl. 325: R33.Google Scholar
  25. Magerlein, B. J., and Miller, W. L., 1975. 16-Fluoroprostaglandins, Prostaglandins 9: 527–530.Google Scholar
  26. Mizuno, Y., Ichikawa, A., and Tomita, K., 1983. Effect of 7-fluoro prostacyclin, a stable prostacyclin analogue, on cAMP accumulation and prostaglandin binding in mastocytoma P-815 cells, Prostaglandins 26: 785–795.PubMedGoogle Scholar
  27. Moncada, S., and Vane, J. R., 1978. Prostacyclin formation and effect, in Chemistry, Biochemistry, and Pharmacological Activity of Prostanoids ( S. M. Roberts and F. Scheinmann, eds.), Pergamon Press, Oxford, pp. 258–273.Google Scholar
  28. Moore, P. K., 1985. Prostanoids; Pharmacological, Physiological and Clinical Relevance, Cambridge University Press, London.Google Scholar
  29. Morinelli, T. A., Okwu, A. K., Mais, D. E., Halushka, P. V., John, V., Chen, C.-K., and Fried, J., 1989. Difluorothromboxane A2 and stereoisomers: Stable derivatives of thromboxane A, with differential effects on platelets and blood vessels, Proc. Nad. Acad. Sci. USA 86: 5600–5604.CrossRefGoogle Scholar
  30. Nysted, L., and Pappo, R., 1982. 5-Fluoro-PGI2 compounds, Eur. Pat. Appl. EP 62,303 CA 98:71787w (1983)].Google Scholar
  31. Ringold, H. J., Lawrence, H., Jr., and Graves, J. M. H., 1964. The influence of unsaturation and of fluorine substitution on ketone-alcohol equilibrium constants. A measure of a,ß-unsaturated ketone resonance energy and of halogen destabilization, J. Am. Chem. Soc. 86: 4510–4512.CrossRefGoogle Scholar
  32. Rotenberg, S. A., Grandizio, A. M., Selzer, A. T., and Clapp, C. H., 1988. Inactivation of soybean lipoxygenase 1 by 12-iodo-cis-octadecenoic acid, Biochemistry 27: 8813–8818.PubMedCrossRefGoogle Scholar
  33. Samuelsson, B., 1983. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220: 568–575.PubMedCrossRefGoogle Scholar
  34. Suzuki, M., Morita, Y., Yanagisawa, A., Baker, B. J., Scheuer, P. J., and Noyori, R., 1988. Synthesis and structural revision of (7E)- and (7Z)-punaglandin 4, J. Org. Chem. 53: 286–295.CrossRefGoogle Scholar
  35. Taguchi, T., Takigawa, T., Igarashi, A., Kobayashi, Y., Tanaka, Y., Jubiz, W., and Briggs, R. G., 1987. Synthesis of 5-tluoroarachidonic acid and its transformation to 5-fluoro12-hydroxyeicosatetraenoic acid, Chem. Pharm. Bull. 35: 1666–1669.PubMedCrossRefGoogle Scholar
  36. Tanaka, Y., Klauck, T. M., Jubiz, W., Taguchi, T., Hanzawa, Y., Igarashi, A., Inazawa, K., Kobayashi, Y., and Briggs, R. G., 1988. Biosynthesis of 20,20,20-trifluoroleukotriene B4 from 20,20,20-trifluoroarachidonic acid: A metabolically stable analogue of leukotriene B4 and its application to a study of stimulation of leukotriene B4 synthesis by immunoglobulin G, Arch. Biochem. Biophys. 263: 178–190.PubMedCrossRefGoogle Scholar
  37. Thierauch, K.-H., Stürzebecher, C.-St., Schillinger, E., Rehwinkel, H., Radüchel, B., Skuballa, W., and Vorbrüggen, H., 1988. Stable 9ß-or 1 la-halogen-15-cyclohexyl-prostaglandins with high affinity to the PGD2-receptor, Prostaglandins 35: 855–868.PubMedGoogle Scholar
  38. Tsai, B. S., Keith, R. H., Villani-Price, D., Haack, R. A., Bauer, R. F., Leonard, R., Abe, Y., and Nicolaou, K. C., 1989. Differential effects of 20-trifluoromethyl leukotriene B4 on human neutrophil functions, Prostaglandins 37: 287–302.PubMedGoogle Scholar
  39. von Euler, U. S., and Eliasson, R., 1967. Prostaglandins (Monographs in Medicinal Chemistry), Academic Press, New York.Google Scholar
  40. Weinheimer, A. J., and Spraggins, R. L., 1969. The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla. Chemistry of coelenterates. XV, Tetrahedron Lett. 1969: 5185–5188.CrossRefGoogle Scholar
  41. Welch, J. T., 1987. Advances in the preparation of biologically active organofluorine compounds, Tetrahedron 43: 3123–3197.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations