Synthetic Polypeptide Models of Collagen: Synthesis and Applications

  • Rajendra S. Bhatnagar
  • Rao S. Rapaka

Abstract

Collagen, the major skeletal protein in the vertebrate body, possesses many unique features which contribute directly to its role as a structural material. Collagen is characterized by a left-handed conformation which is very similar to polyproline II or polyglycine II. Since these amino acids occur more frequently in collagen than in any other vertebrate protein, considerable interest has arisen in the use of polymers containing glycine and proline as models for collagen. The relationship between the primary structure and function of a protein is not always easy to follow; however, the unusual repeating structure of collagen with glycine occurring in every third position makes it ideally suited for model building. Model building based on synthetic polypeptide analogs permits the examination of isolated features of the natural protein molecule in a manner uncomplicated by the influence of neighboring components of differing structure and properties. Synthetic polyproline models of collagen have provided invaluable information concerning the structure of collagen and have been of considerable help in elucidating the mechanism of some of the synthetic steps in the elaboration of collagen.

Keywords

Peptide Synthesis Collagen Model Collagen Molecule Cyanogen Bromide Sequential Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ananthanarayanan, V. S., Rapaka, R. S., Brahmachari, S. K., and Bhatnagar, R. S., 1976, Polypeptide models of collagen: Solution properties of (Gly-Pro-Sar)„ and (Gly-SarPro)„, Baopolymers 15: 707.CrossRefGoogle Scholar
  2. Anderson, G. W., Blodinger, J., and Welcher, A. D., 1952, Tetraethyl pyrophosphite as a reagent for peptide synthesis, J. Am. Chem. Soc 74: 5309.CrossRefGoogle Scholar
  3. Anderson, G. W., Zimmerman, J. E., and Callahan, F. M., 1964, The use of esters of Nhydroxysuccinimide in peptide synthesis, J. Am. Chem. Soc 86: 1839.CrossRefGoogle Scholar
  4. Andreeva, N. S., Debanov, V. A., Millinovâ, M. I., Shibnev, V. A., and Chirgadze, Yu. N., 1961, A synthetic polymer isomorphous to collagen, Biofizika 6: 244.PubMedGoogle Scholar
  5. Astbury, W. T., 1934, X-ray studies of protein structure, Cold Spring Harb. Symp. Quant. Biol 2: 15.CrossRefGoogle Scholar
  6. Balasubramanian, R., Lakshminaraynan, A. V., Sabesan, M. N., Tegoni, G., Venkatesan, K., and Ramachandran, G. N., 1971, Conformation of amino acids. VI. Conformation of the proline ring as observed in crystal structures of amino acids and peptides, Int. J. Protein Res 3: 25.PubMedCrossRefGoogle Scholar
  7. Balian, G., Click, E. M., and Bornstein, P., 1971, Structure of rat skin collagen al-CB8. Amino acid sequence of the hydroxylamine-produced fragment HA1, Biochemistry 10: 4470.PubMedCrossRefGoogle Scholar
  8. Balian, G., Click, E. M., Hermodson, M. A., and Bornstein, P., 1972, Structure of rat skin collagen al-CB8. Amino acid sequence of the hydroxylamine-produced fragment HA2, Biochemistry, 11: 3798.PubMedCrossRefGoogle Scholar
  9. Bayer, E., Eckstein, H., Hagele, K., Konig, W. A., Bruning, W., Hagenmaier, H., and Parr, W., 1970, Failure sequences in the solid phase synthesis of polypeptides, J. Am. Chem. Soc 92: 1735.PubMedCrossRefGoogle Scholar
  10. Berg, R. A., and Prockop, D. J., 1973, Purification of [“C]protocollagen and its hydroxylation by prolyl hydroxylase, Biochemistry 12: 3395.PubMedCrossRefGoogle Scholar
  11. Berg, R. A., Olsen, B. R., and Prockop, D. J., 1970, Titration and melting curves of the collagen-like triple helices formed from (Pro-Pro-Gly),a, J. Biol. Chem 245: 5759.PubMedGoogle Scholar
  12. Bergmann, M., 1935, Complex salts of amino acids and peptides. II. Denaturation of L-proline with the aid of rhodanilic acid. The structure of gelatin, J. Biol. Chem 110: 471.Google Scholar
  13. Bhatnagar, R. S., and Rapaka, R. S., 1974, Conformational aspects of proline hydroxylation in polytripeptide models of collagen, Fed. Proc 33: 1596.Google Scholar
  14. Bhatnagar, R. S., and Rapaka, R. S., 1975a, Polypeptide models of collagen: Properties of (Pro-Pro-ß-Ala),,, Bzopolymers 14: 597.CrossRefGoogle Scholar
  15. Bhatnagar, R. S., and Rapaka, R. S., 1975b, Hydroxylation of proline in a glycine-less polytripeptide model of collagen, Fed. Proc 34: 698.Google Scholar
  16. Bloom, S. M., Dasgupta, S. K., Patel, R. P., and Blout, E. R., 1966, The synthesis of glycyl-L-prolyl glycyl and glycyl-L-prolyl-L-alanyl oligopeptides and sequential polypeptides, J. Am. Chem. Soc 88: 2035.CrossRefGoogle Scholar
  17. Bodanszky, M., and Ondetti, M. A., 1966, Easily removable protecting groups and their removal, in: Peptide Synthesis ( G. A. Olah, ed.), p. 26, Interscience Publishers, New York.Google Scholar
  18. Bodanszky, M., Sheehan, J. F., Ondetti, M. A., and Lande, S., 1963, Glycine analogs of bradykinin, J. Am. Chem. Soc 85: 991.CrossRefGoogle Scholar
  19. Bodanszky, M., Bater, R. J., Chang, A., Fink, M. L., and Funk, K. W., 1972, Experiments with active esters in solid-phase peptide synthesis, in: Chemistry and Biology of Peptides (J. Meinhofer, ed.), pp. 203–207, Ann Arbor Science Publishers Inc., Ann Arbor, Michigan.Google Scholar
  20. Borek, F., Kurtz, J., and Sela, M., 1969, Immunological properties of collagen-like synthetic polypeptide, Biochim. Bzophys. Acta 188: 314.CrossRefGoogle Scholar
  21. Bornstein, P., 1967, Comparative sequence studies of rat skin and tendon collagen. I.Google Scholar
  22. Evidence for incomplete hydroxylation of individual prolyl residues in the normal proteins, Biochemistry 6:3082.Google Scholar
  23. Bornstein, P., 1969, Comparative sequence studies of rat skin and tendon collagen. II. The absence of a short sequence at the amino terminus of the skin al chain, Biochemistry 8: 63.PubMedCrossRefGoogle Scholar
  24. Bornstein, P., 1970, Structure of al-CB8, a large cyanogen bromide fragment from the al chain of rat collagen. The nature of a hydroxylamine-sensitive bond and composition of tryptic peptides, Biochemistry 9: 2408.PubMedCrossRefGoogle Scholar
  25. Brown, F. R., Carver, J. P., and Blout, E. R., 1969, Low temperature circular dichroism of poly(glycyl-L-prolyl-L-alanine), J. Mol. Biol 39: 307.PubMedCrossRefGoogle Scholar
  26. Brown, F. R., DiCorato, A., Lorenzi, G. P., and Blout, E. R., 1972, Synthesis and structural studies of two collagen analogues: Poly(L-prolyl-L-seryl-glycyl) and poly(Lprolyl-L-alanyl-glycyl), J. Mol. Biol 63: 85.PubMedCrossRefGoogle Scholar
  27. Butler, W. T., 1970, Chemical studies on the cyanogen bromide peptides of rat skin collagen. The covalent structure of al-CB5, the major hexose-containing cyanogen bromide peptides of al, Biochemistry 9: 44.PubMedCrossRefGoogle Scholar
  28. Butler, W. T., and Cunningham, L. W., 1966, Evidence for the linkage of a disaccharide to hydroxylysine in tropocollagen, J. Biol. Chem 241: 3882.PubMedGoogle Scholar
  29. Butler, W. T., and Ponds, S. L., 1971, Chemical studies on the cyanogen bromide peptides of rat skin collagen. Amino acid sequence of al-CB4, Biochemistry 10: 2076.PubMedCrossRefGoogle Scholar
  30. Conte, F., Lucente, G., Romeo, A., and Zanotti, G., 1973, Cyclos-formation from tripeptide systems and structure assignment by carbon-13 nuclear magnetic resonance, Int. J. Peptide Protein Res 5: 353.CrossRefGoogle Scholar
  31. Cowell, R. D., and Jones, J. H., 197la, The use of monoesters of catechol in the racemization-free synthesis of sequential polypeptides with amino or carboxy side-chains, J. Chem. Soc 1971: 1009.Google Scholar
  32. Cowell, R. D., and Jones, J. H., 1971b, Sequential polypeptides. Part I. Use of monoesters of catechol in the synthesis of sequential polypeptides, J. Chem. Soc 1971: 1082.Google Scholar
  33. Cowell, R. D., and Jones, J. H., 1972, Sequential polypeptides. Part V. The use of monoesters of catechol in the synthesis of sequential polypeptides with amino or carboxyl side-chains, J. Chem. Soc 1972: 2236.Google Scholar
  34. Denkewalter, R. G., and Hirschmann, R., 1969, The synthesis of an enzyme, Am. Sci 57: 389.PubMedGoogle Scholar
  35. DeTar, D. F., 1967, The active ester synthesis of sequence peptide polymers, in: Peptides (H. C. Beyerman, A. Van De Linde, and W. Massen van den Brink, eds.), pp. 125130, North-Holland Publishing Company, Amsterdam.Google Scholar
  36. DeTar, D. F., Honsberg, W., Honsberg, U., Wieland, A., Gouge, M., Bach, H., Tahara, A., Brinigar, W. S., and Rogers, F. F., Jr., 1963, Synthesis of peptide polymers with repeating sequence, J. Am. Chem. Soc 85: 2873.CrossRefGoogle Scholar
  37. DeTar, D. F., Silverstein, R., and Rogers, F. F., Jr., 1966, Reactions of carbodiimides. III. The reactions of carbodiimides with peptide acids, J. Am. Chem. Soc 88: 1024.CrossRefGoogle Scholar
  38. DeTar, D. F., Alberts, R. F., and Gilmore, F., 1972, Synthesis of sequence peptide polymers related to collagen, J. Org . Chem. 37: 6377.CrossRefGoogle Scholar
  39. Doyle, B. B., Traub, W., Lorenzi, G. P., and Blout, E. R., 1971, Conformational investigations on the polypeptide and oligopeptides with the repeating sequence Lalanyl-L-prolylglycine, Biochemistry 10: 3052.PubMedCrossRefGoogle Scholar
  40. Engel, J., 1962, Investigation of the denaturation and renaturation of soluble collagen by light scattering, Arch. Biochem. Biophys 97: 150.CrossRefGoogle Scholar
  41. Engel, J., Kurtz, J., Katchalski, E., and Berger, A., 1966, Polymers of tripeptides as collagen models. II. Conformational changes of poly(L-prolyl-glycyl-L-prolyl) in solution, J. Mol. Biol 17: 255.PubMedCrossRefGoogle Scholar
  42. Erickson, B. W., and Merrifield, R. B., 1972, Improved protecting groups for solid phase synthesis, in: Chemistry and Biology of Peptides U. Meinhofer, ed.), pp. 191–195, Ann Arbor Science Publishers Inc., Ann Arbor, Michigan.Google Scholar
  43. Fairweather, R., and Jones, J. H., 1972a, Sequential polypeptides. Part IV. The synthesis of poly-(L-alanyl-L-glycyl-L-proline) and its stereoisomers, J. Chem. Soc. 1972:1908.Google Scholar
  44. Fairweather, R., and Jones, J. H., 19726, Sequential polypeptides. Part VI. The synthesis of some sequential polypeptide collagen models containing proline analogues, J. Chem. Soc 1972: 2475.Google Scholar
  45. Fairweather, R., and Jones, J. H., 1973, The antigenecity of sequential polypeptides, Immunology 25: 241.PubMedGoogle Scholar
  46. Fasman, G. D., and Blout, E. R., 1963, Copolymers of L-proline and sarcosine: Synthesis and physical-chemical studies, Biopolymers 1: 99.CrossRefGoogle Scholar
  47. Fietzek, P. P., Rexrodt, F. W., Wendt, P., Stark, M., and Kuhn, K., 1972, The covalent structure of collagen. Amino acid sequence of peptide al-CB6–C2, Eur. J. Biochem. 30:163.Google Scholar
  48. Fietzek, P. P., Rexrodt, F. W., Hopper, K. E., and Kuhn, K., 1973, The covalent structure of collagen. 2. The amino acid sequence of al-CB7 from calfskin collagen, Eur. J. Biochem 38: 396.PubMedCrossRefGoogle Scholar
  49. Fischer, E., 1906, Synthese von peptiden XV, Chem. Ber 39: 2893.CrossRefGoogle Scholar
  50. Flory, P. J., and Weaver, E. S., 1960, Helix coil transitions in dilute aqueous collagen solutions,/ Am. Chem. Soc. 82: 4518.CrossRefGoogle Scholar
  51. Fuchs, S., Mozes, E. Maoz, A., and Sela, M., 1974, Thymus independence of a collagen-like synthetic polypeptide and of collagen and the need for thymus and bone marrow-cell cooperation in the immune response to gelatin, J. Exp. Med. 139:148.Google Scholar
  52. Gelman, R. A., and Blackwell, J., 1973, Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: Chondroitin 4-sulfate and dermatan sulfate, Biopolymers 12:1959.Google Scholar
  53. Gelman, R. A., Rippon, W. B., and Blackwell, J., 1973, Interaction between chondroitin 6-sulfate and poly-L-lysine in aqueous solution: Circular dichroism studies, Biopolymers 12: 541.CrossRefGoogle Scholar
  54. Gisin, B. F., and Merrifield, R. B., 1972, Carboxyl-catalyzed intramolecular aminolysis. A side chain reaction in solid phase synthesis, J. Am. Chem. Soc 94: 3102.PubMedCrossRefGoogle Scholar
  55. Goodman, M., and Glaser, R. C., 1970, Racemization mechanisms in peptide synthesis, in: Peptides: Chemistry and Biochemistry ( B. Weinstein, ed.), pp. 269–272, Marcel Dekker Inc., New York.Google Scholar
  56. Goodman, M., and Stueben, K. C., 1959, Peptide synthesis via amino acid active esters, J. Am. Chem. Soc 81: 3980.CrossRefGoogle Scholar
  57. Goodman, M., and Stueben, K., 1962, Peptide synthesis via amino acid active esters. II.Google Scholar
  58. Some abnormal reactions during peptide synthesis, J. Am. Chem. Soc 84:1279 Google Scholar
  59. Gutte, G., and Merrifield, R. B., 1969, The total synthesis of an enzyme with ribonuclease A activity, J. Am. Chem. Soc. 91:501.Google Scholar
  60. Harrington, W. F., and Sela, M., 1958, Studies on the structure of poly-L-proline in solution, Biochim. Bzophys. Acta 27: 24.CrossRefGoogle Scholar
  61. Heidemann, E., and Bernhardt, H. W., 1968, Synthetic polypeptides as models for collagen, Nature 220:1326.Google Scholar
  62. Heidemann, E., and Nill, H. W., 1969, Synthetische Polypeptide der Sequenztypen (Glycin-LProlin-L-Serin)„ und (Glycin-L-Serin-L-Prolin), Z. Naturforsch. B 24: 843.PubMedGoogle Scholar
  63. Hopfinger, A. J., 1973, Conformational Properties of Macromolecules, Academic Press, N.Y. Huggins, M. L., Ohtsuka, K., and Morimoto, S., 1968, Synthesis of certain polypeptides and polytripeptides, J. Polym. Sci. C 23: 343.Google Scholar
  64. Hulmes, D. J. S., Miller, A., Parry, D. A. D., Piez, K. A., and Woodhouse-Galloway, J 1973, Analysis of the primary structure of collagen to the origins of molecular packing, J. Mol. Biol 79:137 Google Scholar
  65. Hutton, J. J., Marglin, A., Witkop, B., Kurtz, J., Berger, A., and Udenfriend, S., 1968, Synthetic polypeptides as substrates and inhibitors of collagen proline hydroxylase, Arch. Biochim. Biophys 125: 779.Google Scholar
  66. Johnson, B. J., 1974, Synthesis, structure, and biological properties of sequential polypeptides, J. Pharm. Sci 63: 313.Google Scholar
  67. Jones, J. H., 1969, Racemization free polypeptide synthesis, J. Chem. Soc. 1969:1436. Josse, J., and Harrington, W. F., 1964, Role of pyrrolidine residues in the structure and stabilization of collagen, J. Mol. Biol 9: 269.Google Scholar
  68. Juva, K., and Prockop, D. J., 1969, Formation of enzyme-substrate complexes with protocollagen proline hydroxylase and large polypeptide substrates, J. Biol. Chem 244: 6486.Google Scholar
  69. Kang, A. H Piez, K. A., and Gross, J., 1969, Characterization of the cyanogen bromide peptides from the al chain of chick skin collagen, Biochemistry 8:1506 Google Scholar
  70. Kapoor, A., 1970, Recent trends in the synthesis of linear peptides, J. Pharm. Sci. 59:1.Google Scholar
  71. Katchalski, E., Sela, M., Silman, H. I., and Berger, A., 1964, Polyamino acids as protein models, in: The Proteins (H. Neurath, ed.), pp. 449–452, Vol. 2, Academic Press, New York.Google Scholar
  72. Kettman, J. R Jr., Benjamini, E., Michaeli, D and Leung, D. Y. K., 1967, The synthesis and immunological activity of a peptide related to collagen, Biochim. Biophys. Res. Commun 29:623 Google Scholar
  73. Khalikov, Sh. Kh., Poroshin, K. T., Shibnev, V. A., 1968, Preparation of polypeptides with stable conformation as possible models of esterase activity, Dokl. Akad. Nauk. Tadzh. SSR 11: 28.Google Scholar
  74. Kikuchi, Y., Fujimoto, D., and Tamiya, N., 1969, The enzymic hydroxylation of protocollagen models, Biochem. J 115: 569.PubMedGoogle Scholar
  75. Kikuchi, Y., Fujimoto, D., and Tamiya, N., 1971, Synthesis and enzymatic hydroxylation of protocollagen model peptides containing a hydroxyproline residue, Biochem. J 124: 695.PubMedGoogle Scholar
  76. Kitaoka, H., Sakakibara, S., and Tani, H., 1958, Synthesis of poly(L-prolyl-L-leucyl- glycyl). An attempted synthesis of model collagen, Bull. Chem. Soc. Jpn 31: 802.CrossRefGoogle Scholar
  77. Kivirikko, K. I., and Prockop, D. J., 1967, Hydroxylation of proline in synthetic polypeptides with purified protocollagen hydroxylase, J. Biol. Chem 242: 4007.Google Scholar
  78. Kivirikko, K. I., Ganser, V., Engel, J., and Prockop, D. J 1967, Comparison of poly-Lproline I and II as inhibitors of protocollagen hydroxylase, Hoppe-Seyler’s Z. Physiol. Chem 348:1341 Google Scholar
  79. Kivirikko, K. I., Prockop, D. J., Lorenzi, G. P., and Blout, E. R., 1969, Oligopeptides with the sequences Ala-Pro-Gly and Gly-Pro-Gly as substrates or inhibitors for protocolla-gen proline hydroxylase, J. Biol. Chem 244: 2755.PubMedGoogle Scholar
  80. Kivirikko, K. I., Suga, K., Kishida, Y., Sakakibara, S., and Prockop, D. J., 1971, Asymmetry in the hydroxylation of (Pro-Pro-Gly)5 by protocollagen proline hydroxylase, Biochem. Biophys. Res. Commun 45: 1591.Google Scholar
  81. Kivirikko, K. I., Kishida, Y., Sakakibara, S., and Prockop, D. J., 1972a, Hydroxylation of (X-Pro-Gly)„ by protocollagen proline hydroxylase: Effect of chain length, helical conformation and amino acid sequence in the substrate, Biochim. Biophys. Acta 271: 347.Google Scholar
  82. Kivirikko, K. I., Shudo, K., Sakakibara, S., and Prockop, D. J., 1972b, Studies on protocollagen lysine hydroxylase. Hydroxylation of synthetic peptides and the stoichiometric decarboxylation of a-ketoglutarate, Biochemistry 11:122.Google Scholar
  83. Kobayashi, Y., Sakai, R., Kakiuchi, K., and Isemura, T., 1970, Physicochemical analysis of (Pro-Pro-Gly)„ with defined molecular weight. Temperature dependence of molecular weight in aqueous solution, Biopolymers 9: 415.PubMedCrossRefGoogle Scholar
  84. Kovacs, J., Gionnotti, R., and Kapoor, A., 1966, Polypeptides with known repeating sequence of amino acids. Synthesis of poly-L-glutamyl-L-alanyl-L-glutamic acid and poly glycyl glycyl-L-phenylalanine through pentachlorphenyl active ester, J. Am. Chem. Soc 88: 2282.CrossRefGoogle Scholar
  85. Kovacs, J., Mayer, G. L., Johnson, R. H., and Gionotti, R., 1972, On the problem of racemization during the synthesis of sequential polypeptides, in: Progress in Peptide Research ( S. Lande, ed.), Vol. 11, pp. 185–193, Gordon and Breach, New York.Google Scholar
  86. Kroner, Th. D., Tabroff, W., and MacGarr, J. J., 1953, Peptides isolated from a partial hydrolysate of steer hide collagen, J. Am. Chem. Soc 75: 4084.CrossRefGoogle Scholar
  87. Kroner, Th. D., Tabroff, W., and MacGarr, J. J., 1955, Peptides isolated from a partial hydrolysate of steer hide collagen. II. Evidence for the prolyl-hydroxyproline linkage in collagen, J. Am. Chem. Soc 77: 3356.CrossRefGoogle Scholar
  88. Lane, J. M., and Miller, E. J., 1969, Isolation and characterization of the peptides derived from the a2 chain of chick bone collagen after cyanogen bromide cleavage, Biochemistry 8: 2134.PubMedCrossRefGoogle Scholar
  89. Leach, S. J., Nemethy, G., and Scheraga, H. A., 1966, Computation of the sterically allowed conformations of peptides, Biopolymers 4: 369.PubMedCrossRefGoogle Scholar
  90. Lorenzi, G. P., Doyle, B. B., and Blout, E. R., 1971, Synthesis of polypeptides and oligopeptides with repeating sequence L-alanyl-L-prolylglycine, Biochemistry 10: 3046.PubMedCrossRefGoogle Scholar
  91. Maoz, A., Fuchs, S., and Sela, M., 1973a, Immune response to the collagen-like ordered polypeptide (L-Pro-Gly-L-Pro)„, Biochemistry 12: 4238.PubMedCrossRefGoogle Scholar
  92. Maoz, A., Fuchs, S., and Sela, M., 19736, On immunological cross-reactions between the synthetic ordered polypeptide (L-Pro-Gly-L-Pro)„ and several collagens, Biochemistry 12: 4246.Google Scholar
  93. Marshall, G. R., and Merrifield, R. B., 1965, Synthesis of angiotensins by the solid phase method, Biochemistry 4: 2396.CrossRefGoogle Scholar
  94. Mattice, W. L., and Mandelkern, L., 1971, Development of ordered structures in sequential copolypeptides containing L-proline and y-hydroxy-L-proline, Biochemistry 10: 1926.PubMedCrossRefGoogle Scholar
  95. Meienhofer, J., 1973, Peptide synthesis: A review of the solid-phase method, In: Hormonal Proteins and Peptides (C. H. Li, ed.), pp. 45–267, Academic Press, New York. Merrifield, R. B., 1963, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide, J. Am. Chem. Soc. 85: 2149.Google Scholar
  96. Merrifield, R. B., 1964, Solid phase peptide synthesis. III. An improved synthesis of bradykinin, Biochemistry 3: 1385.PubMedCrossRefGoogle Scholar
  97. Miller, E. J., Lane, J. M., and Piez, K. A., 1969, Isolation and characterization of the peptides derived from the al chain of chick bone collagen after cyanogen bromide cleavage, Biochemistry 8: 30.PubMedCrossRefGoogle Scholar
  98. Nossel, H. L., Wilner, G. D., and LeRoy, E. C., 1969, Importance of polar groups for initiating blood coagulation and aggregating platelets, Nature 221: 75.PubMedCrossRefGoogle Scholar
  99. Okada, K., Kikuchi, Y., Kawashiri, Y., and Hiramoto, M., 1972, Syntheses and enzymic hydroxylation of protocollagen model peptides containing glutamyl or leucyl residue, FEBS Lett. 28: 226.PubMedCrossRefGoogle Scholar
  100. Oriel, P. J., and Blout, E. R., 1966, On the structure of Gly-Pro-Gly and Gly-Pro-Ala oligopeptides and sequential polypeptides, J. Am. Chem. Soc 88: 2041.CrossRefGoogle Scholar
  101. Poroshin, K. T., Maryash, L. I., Grechishko, V. S., and Shibnev, V. A., 1970, Synthesis of structurally regular polypeptides containing alanine and N`-benzoxycarbonyl lysine, Dokl. Akad. Nauk. Tadzh. SSSR Khim. 13:19.Google Scholar
  102. Prockop, D. J., and Kivirikko, K. I., 1969, Effect of polymer size on the inhibition of protocollagen proline hydroxylase by polyproline IL]. Biol. Chem 244: 4838.Google Scholar
  103. Purdie, J. E., and Benoiton, N. L., 1973, Piperazine dione formation from esters of dipeptides containing glycine, alanine and sarcosine. Kinetics in aqueous solution, J. Chem. Soc 1973: 1845.Google Scholar
  104. Ramachandran, G. N., Bansal, M., and Bhatnagar, R. S., 1973, A hypothesis on the role of hydroxyproline in stabilizing collagen structure, Biochim. Biophys. Acta 322: 166.PubMedCrossRefGoogle Scholar
  105. Ramachandran, G. N., Bansal, M., and Ramakrishnan, C., 1975, Hydroxyproline stabilizes both intrafibrillar structure as well as inter-protofibrillar linkages in collagen, Curr. Sci. 44:1.Google Scholar
  106. Rapaka, R. S., and Bhatnagar, R. S., 1975a, Synthesis of polypeptide models of collagen, Int. J. Peptide and Protein Res 7: 119.CrossRefGoogle Scholar
  107. Rapaka, R. S., and Bhatnagar, R. S., 1975b, Polypeptide models of collagen. Synthesis of (Pro-Pro-ß-Ala),,. Int. J. Peptide and Protein Res 7: 475.CrossRefGoogle Scholar
  108. Rapaka, R. S., and Bhatnagar, R. S., 1976, Polypeptide models of collagen. Synthesis of (Pro-Pro-Ala)„ and (Pro-Pro-Val),,, Int. J. Peptide and Protein Res. (in press).Google Scholar
  109. Rapaka, R. S., Bhatnagar, R. S., and Nitecki, D. E., 1976a, Racemization in the synthesis of polytripeptide models of collagen, Biopolymers 15: 317.PubMedCrossRefGoogle Scholar
  110. Rapaka, R. S., Bhatnagar, R. S., and Nitecki, D. E., 19766, Racemization in the synthesis of sequential polypeptides using N-hydroxysuccinimide, Bzopolymers(in press).Google Scholar
  111. Rothe, M., and Mazanek, J 1972, Possible side-reactions during solid-phase peptide synthesis. II. Reaction between neighbouring chains. Formation of hydroxy groups on the resin and their consequences, in: Chemistry and Biology of Peptides U. Meienhofer, ed.), pp. 89–91, Ann Arbor Science Publishers Inc., Ann Arbor, Michigan.Google Scholar
  112. Sakakibara, S., Kishida, Y., Kikuchi, Y., Sakai, R., and Kakiuchi, K., 1968, Synthesis of poly-(L-prolyl-L-prolyl glycyl) of defined molecular weights, Bull. Chem. Soc. Jpn 41: 1273.CrossRefGoogle Scholar
  113. Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kobayashi, Y., and Prockop, D. J., 1973, Synthesis of (Pro-Hyp-Gly) of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxyproline, Biochim. Biophys. Acta 303:198.Google Scholar
  114. Schimmel, P. L., and Flory, P. J., 1968, Conformational energies and configurational statistics of copolypeptides containing L-proline, J. Mol. Biol 34: 105.PubMedCrossRefGoogle Scholar
  115. Schroeder, W. A., Honnen, L., and Green, F. C., 1953, Chromatographic separation and identification of some peptides in partial hydrolysates of gelatin, Proc. Natl. Acad. Scz. U.S.A 39: 23.CrossRefGoogle Scholar
  116. Schroeder, W. A., Kay, L. M., LeGette, J., Honnen, L., and Green, F. C., 1954, The constitution of gelatin. Separation and estimation of peptides in partial hydrolysates, J. Am. Chem. Soc 76: 3556.CrossRefGoogle Scholar
  117. Schwartz, A., Andries, J. C., and Walton, A. G., 1970, Structural and morphological investigations of poly(GIy-Ala-Pro), Nature 226:161.Google Scholar
  118. Segal, D., M., 1969, Polymers of tripeptides as collagen models. VII. Synthesis and solution properties for collagen-like polyhexapeptides, J. Mol. Biol 43: 497.Google Scholar
  119. Shibnev, V. A., 1964, Use of ethoxyacetylene for polymerization and cyclization of tripeptides containing amino acids, Izv Akad. Nauk. SSSR, Ser. Khim. 8:1545.Google Scholar
  120. Shibnev, V. A., and Debabov, V. G., 1964, Regular polypeptide with glycyl-prolyl- hydroxyprolyl sequence that is isomorphous with collagen, Izv. Akad. Nauk. SSSR, Ser. Khim 6: 1043.Google Scholar
  121. Shibnev, V. A., and Lazareva, A. V., 1969, Use of tetraethylpyrrophosphite for synthesizing polypeptides simulating the nonpolar region of the collagen molecule, Izv. Akad. Nauk. SSSR, Ser. Khzm 2: 398.Google Scholar
  122. Shibnev, V. A., and Lisvenko, A. V., 1966, Synthesis of polypeptide Gly-Pro-Pro model of collagen by the method of activated esters, Izv. Akad. Nauk. SSSR, Ser. Khim 7: 1287.Google Scholar
  123. Shibnev, V. A., Lisvenko, A. V., Rogulenkova, V. N., Millinova, M. I., Esipova, N. G., and Chirgadze, U. N., 1966a, Configuration of a polypeptide chain (glycyl-L-hydroxyprolyl-L-hydroxyproline), Biofzzika 11:1067.Google Scholar
  124. Shibnev, V. A., Poroshin, K. T., and Grechishko, V. S., 1966b, The effect of proline residue on formation of specific structure in a polypeptide with the sequence of GlyPro-Lys (€-Tos). Izv. Akad. SSSR, Ser. Khim. 8:1493.Google Scholar
  125. Shibnev, V. A., Dyumaev, K. M., Chuvaeva, T. P., Smirnovl, D., and Poroshin, K. T., 1967a, Use of /3-pyridol esters and their nitro derivatives in the synthesis of peptides and polypeptides with a regulated composition, Izv. Akad. Nauk. SSSR, Ser. Khim 7: 1634.Google Scholar
  126. Shibnev, V. A., Grechishko, V. S., and Poroshin, K. T., 19676, Synthesis and polymerization of activated esters of tripeptides involving N-tosyl-L-lysine, Izv. Akad. Nauk. SSSR, Ser. Khim 10: 2327.Google Scholar
  127. Shibnev, V. A., Chuvaeva, T. P., and Poroshin, K. T., 1968a, Synthesis of polypeptides with regular structure having molecular weight similar to tropocollagen, Izv. Akad. Nauk. SSSR, Ser. Khim 1: 225.Google Scholar
  128. Shibnev, V. A., Chuvaeva, T. P., and Poroshin, K. T., 1968b, Application of pentachlorophenyl esters for the synthesis of collagen models, Izv. Akad. Nauk. SSSR, Ser. Khim 8: 1825.Google Scholar
  129. Shibnev, V. A., Lisvenko, A. V., Chuvaeva, T. P., and Poroshin, K. T., 1968c, Comparison of some methods used for the synthesis of regular polypeptides, Izv. Akad. Nauk. SSSR, Ser. Khim 11: 2564.Google Scholar
  130. Shibnev, V. A., Poroshin, K. T., Chuvaeva, T. P., and Martynova, G. A., 1968d, The use of 8-hydroxyquinoline peptide esters in the synthesis of polypeptides with regular structure, Izv. Akad. Nauk. SSSR, Ser. Khim. 5:1144.Google Scholar
  131. Shibnev, V. A., Chuvaeva, T. P., Martynova, G. A., and Poroshin, K. T., 1969a, 2,4,5trichlorophenyl esters and their use in the synthesis of polypeptides of regular structure, Izv. Akad. Nauk. SSSR, Ser. Khim 3: 637.Google Scholar
  132. Shibnev, V. A., Chuvaeva, T. P., Martynova, G. A., and Poroshin, K. T., 1969b, Use of Nhydroxysuccinimide esters for synthesizing models of collagen structure, Izv. Akad. Nauk. SSR, Ser. Khim 11: 2532.Google Scholar
  133. Shibnev, V. A., Chuvaeva, T. P., and Poroshin, K. T., 1969c, Synthesis of various activated tripeptide esters representing monomers for preparing models of collagen structure, Izv. Akad. Nauk. SSSR, Ser. Khim 11: 2527.Google Scholar
  134. Shibnev, V. A., Chuvaeva, T. P., Poroshin, K. T., 1970a, Application of different activated esters for synthesis of polypeptides with regular structure and their comparative evaluation, Izv. Akad. Nauk. SSSR, Ser. Khim. 1:121.Google Scholar
  135. Shibnev, V. A., Khalikov, Sh. Kh., Finogenova, M. P., and Poroshin, K. T., 19706, Synthesis of poly(glycyl-seryl-hydroxyproline) and poly(glycyl-seryl-proline) polypeptides using pentachlorophenyl esters, Izv. Akad. Nauk. SSSR, Ser. Khim 2: 399.Google Scholar
  136. Shibnev, V. A., Khalivkov, Sh. Kh., Finogenova, M. P., and Poroshin, K. T., 1970c, Synthesis of a polytripeptide (Pro-Ser-Gly)„ simulating the collagen type structure, Izv. Akad. Nauk. SSSR, Ser. Khim 12: 2822.Google Scholar
  137. Shibnev, V. A., Khalivkov, Sh. Kh., Finogenova, M. P., and Poroshin, K. T., 1970d, Synthesis of polypeptides of regular structure containing serine and glutamic acid and modeling nonpolar regions of the collagen protein molecule, Izv. Akad. Nauk. SSSR, Ser. Khim 4: 880.Google Scholar
  138. Shibnev, V. A., Finogenova, M. P., and Poroshin, K. T., 197la, Synthesis of high-molecular weight (Gly-Pro-Pro)„ polytripeptide collagen-type structure, Dokl. Akad. Nauk. SSSR 198: 862.Google Scholar
  139. Shibnev, V. A., Poroshin, K. T., and Grechishko, V. S., 197 lb, Synthesis of protected oligopeptides with the Gly-Pro-Pro sequence and the formation of collagen-type structure in them, Dokl. Akad. Nauk. SSSR 198: 608.Google Scholar
  140. Shibnev, V. A., Khalikov, Sh. Kh., Ismailov, M. I., and Poroshin, K. T., 1973, Synthesis of regular polypeptides containing a sequence of collagen-type Glu-Glu (OCH3)-Pro and Pro-His-(CBO)-Gly-, Izv. Akad. Nauk. SSSR, Ser. Khim 8: 1874.Google Scholar
  141. Spiro, R. G., 1969, Characterization and quantitative determination of the hydroxylysinelinked carbohydrate units of several collagens, J. Biol. Chem 244: 602.PubMedGoogle Scholar
  142. Stewart, F. H. C., 1965, The synthesis and polymerization of peptide p-nitrophenyl esters, Aust. J. Chem 18: 887.CrossRefGoogle Scholar
  143. Stewart, F. H. C., 1969, Synthesis of polydepsipeptides with regularly repeating unit sequences, Aust. J. Chem 22: 1291.CrossRefGoogle Scholar
  144. Stewart, J. M., and Matsueda, G. R., 1972, Some problems in solid phase peptide synthesis, in: Chemistry and Biology of Peptides U. Meienhofer, ed.), pp. 221–224, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  145. Suzuki, F., and Koyama, E., 1969, Hydroxylation of proline in collagen model peptides, Biochim. Biophys. Acta 177: 154.PubMedCrossRefGoogle Scholar
  146. Tamburro, A. M., Scatturina, A., and Marchiori, F., 1968, Studi conformazionali su polypeptidi sequenziali-nota III. Sintesi di poli-L-prolil-L-fenilalanil glicina e poli-Lfenilalanil-L-prolilglicina, Gazz. Chim. Ital 96: 638.Google Scholar
  147. Torchia, D. A., 1972, The poly(hydroxy-L-proline) ring conformation determined by proton magnetic resonance, Macromolecule 5: 566.CrossRefGoogle Scholar
  148. Torchia, D. A., and Lyerla, J. R., 1974, Molecular mobility of polypeptides containing proline as determined by “C magnetic resonance, Biopolymers 13: 97.PubMedCrossRefGoogle Scholar
  149. Traub, W., 1969, Polymers of tripeptides as collagen models. V. An X-ray study of poly(L-prolyl-glycyl-glycine), J. Mol. Biol 43: 479.PubMedCrossRefGoogle Scholar
  150. Traub, W., 1974, Some stereochemical implications of the molecular conformation of collagen. Israel J. Chem 12: 435.Google Scholar
  151. Traub, W., and Piez, K., 1971, The chemistry and structure of collagen, Adv. Protein Chem 25: 243.PubMedCrossRefGoogle Scholar
  152. Traub, W., and Yonath, A., 1966, Polymers of tripeptides as collagen models. I. X-ray studies of poly(L-prolyl-glycyl-L-proline) and related polytripeptides, J. Mol. Biol 16: 404.PubMedCrossRefGoogle Scholar
  153. Veis, A., and Drake, M. P., 1963, The introduction of intramolecular covalent cross-linkages into ichthyocol tropocollagen with monofunctional aldehydes, J. Biol. Chem 238: 2003.Google Scholar
  154. Verber, D. F., Brady, S. F., and Hirschmann, R., 1972, Some novel amine protecting groups, in: The Chemistry and Biology of Peptides U. Meienhofer, ed.), pp. 315–319, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  155. von der Mark, K., Wendt, P., Rexrodt, F., and Kühn, K., 1970, Direct evidence for a correlation between amino acid sequence and cross striation pattern collagen, FEBS Lett. 11:105.Google Scholar
  156. Von Hippel, P. H., and Harrington, W. F., 1959, Enzymic studies of the gelatin —~ collagen-fold transition, Biochim. Biophys. Acta 36: 427.CrossRefGoogle Scholar
  157. Von Hippel, P. H., and Harrington, W. F., 1960, The structure and stabilization of the collagen macromolecule, Brookhaven Symp. Biol 13: 213.Google Scholar
  158. Walton, A. G., 1974, Synthetic polypeptide models of collagen. Structure and function, in: Structure of Biopolymers, Proceedings of the 26th Symposium of the Colston Research Society, ( E.D.T. Atkins and A. Keller, eds.) pp. 139–148, Butterworth, London.Google Scholar
  159. Wendt, P., von der Mark, K., Rexrodt, F., and Kühn, K., 1972, The covalent structure of collagen. The amino acid sequence of the 112-residues amino-terminal part of peptide al-CB6 from calf-skin collagen, Eur. J. Biochem 30: 169.PubMedCrossRefGoogle Scholar
  160. Wieland, T., and Bernhard, H., 1953, Über Peptid-synthesin. 7. Mitt. Di Und Tri-peptid Verbindungen des Triphenols, Ann. 582: 218.Google Scholar
  161. Winklmair, D., Engel, J., and Ganser, V., 1971, A cooperative transition between two helical conformations in a linear system: Poly-L-proline I II. II. Kinetic studies, Biopolymers 10:721.Google Scholar
  162. Wolman, Y., Gallop, P. M., and Patchornik, A., 1961, Peptide synthesis via oxidation of hydrazides, J. Am. Chem. Soc 83: 1263.CrossRefGoogle Scholar
  163. Yamashiro, D., Noble, R. L., and Li, C. H., 1972, New protecting groups for amino acids in solid phase peptide synthesis, in: Chemistry and Biology of Peptides (J. Meienhofer, ed.), pp. 197–202. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Rajendra S. Bhatnagar
    • 1
  • Rao S. Rapaka
    • 1
  1. 1.Laboratory of Connective Tissue Biochemistry, School of DentistryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations