Enzymatic Depolymerization of Starch

  • Zivko L. Nikolov
  • Peter J. Reilly
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

The amylases, a large family consisting of α-amylase, β-amylase, glycoamylase, and a number of lesser-known enzymes, are united in their preferential hydrolysis of the α-(1,4) glucosidic bond in amylose, amylopectin, glycogen, and maltooligosaccharides. They have been used and studied for most of this century, and are among the most commercially important of all enzyme families. They act in two different modes. α-Amylase is an endo-hydrolase, and has more affinity for interior bonds than those located near the ends of substrates composed primarily of α-(1,4) glucosidic bonds. Because the location of the bond it cleaves is not fixed, a mixture of products results. All other amylases are exo-hydrolases, in that they attack bonds at a specific distance from the nonreducing end of the substrate. Glucoamylase, for instance, attacks the bond immediately adjacent to the nonreducing end, and therefore produces glucose along with a molecule one glucosyl residue shorter than the original substrate. β-Amylase attacks the second bond from the end to produce maltose. The single small products of other exo-amylases are likewise determined by the specific bonds they break.

Keywords

Starch Granule Soluble Starch Glucosidic Bond Glucosidic Linkage Glucosyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Reilly, in: Starch Conversion Technology ( G. M. A. van Beynum and J. A. Rods, eds.), p. 102, Marcel Dekker, New York (1985).Google Scholar
  2. 2.
    W. M. Fogarty, in: Microbial Enzymes and Biotechnology (W. M. Fogarty, ed.), p. 1, Applied Science, London (1983).Google Scholar
  3. 3.
    N. Saito, Arch. Biochem. Biophys. 155, 290 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    J. P. Chiang, J. E. Alter, and M. Sternberg, Starch/Staerke 31, 86 (1979).CrossRefGoogle Scholar
  5. 5.
    V. Buonocore, C. Caporale, M. de Rosa, and A. Gambacorta, J. Bacteriol. 128, 515 (1976).PubMedGoogle Scholar
  6. 6.
    K. Takkinen, R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soderlund, and L. Kaariainen, J. Biol. Chem. 258, 1007 (1983).PubMedGoogle Scholar
  7. 7.
    R. Nakajima, T. Imanaka, and S. Aiba, J. Bacteriol. 163, 401 (1985).PubMedGoogle Scholar
  8. 8.
    T. Yuuki, T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka, J. Biochem. 98, 1147 (1985).PubMedGoogle Scholar
  9. 9.
    E. H. Fisher and E. A. Stein, in: The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Vol. 4, p. 313, Academic Press, New York (1960).Google Scholar
  10. 10.
    E. A. Stein and E. H. Fisher, J. Biol. Chem. 232, 867 (1958).PubMedGoogle Scholar
  11. 11.
    J. Hsiu, E. H. Fisher, and E. A. Stein, Biochemistry 3, 61 (1964).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Imanishi, J. Biochem. 60, 381 (1966).PubMedGoogle Scholar
  13. 13.
    E. W. Boyer and M. B. Ingle, J. Bacteriol. 110, 992 (1972).PubMedGoogle Scholar
  14. 14.
    G. B. Madsen, B. H. Norman, and S. Slott, Staerke 25, 304 (1973).CrossRefGoogle Scholar
  15. 15.
    P. J. Brumm, R. E. Hebeda, and W. M. Teague, Food Biotechnol. 2, 67 (1988).CrossRefGoogle Scholar
  16. 16.
    J. F. Robyt and D. French, Arch. Biochem. Biophys. 100, 451 (1963).PubMedCrossRefGoogle Scholar
  17. 17.
    N. E. Welker and L. L. Campbell, Biochemistry 6, 3681 (1967).PubMedCrossRefGoogle Scholar
  18. 18.
    G. J. Walker and P. M. Hope, Biochem. J. 86, 52 (1963).Google Scholar
  19. 19.
    C. T. Greenwood, E. A. Milne, and G. R. Ross, Arch. Biochem. Biophys. 126, 244 (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    E. J. Hehre, D. S. Genghof, and G. Okada, Arch. Biochem. Biophys. 142, 382 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    F. J. Morgan and F. G. Priest, J. Appl. Bacteriol. 50, 107 (1981).CrossRefGoogle Scholar
  22. 22.
    G. E. Inglett, J. Food Biochem. 11, 249 (1988).Google Scholar
  23. 23.
    S. L. Pfeuller and W. H. Elliott, J. Biol. Chem. 244, 48 (1969).Google Scholar
  24. 24.
    S. Medda and A. K. Chandra, J. Appl. Bacteriol. 48, 47 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Matsuzaki, K. Yamane, K. Yamaguchi, Y. Nagata, and B. Maruo, Biochim. Biophys. Acta 365, 235 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Yoneda, K. Yamane, K. Yamaguchi, Y. Nagata, and B. Maruo, J. Bacteriol. 120, 1144 (1974).PubMedGoogle Scholar
  27. 27.
    G. L. Gray, S. E. Mainzer, M. W. Rey, M. H. Lamsa, K. L. Kindle, C. Carmonia, and C. Requadt, J. Bacteriol. 166, 635 (1986).PubMedGoogle Scholar
  28. 28.
    H. Hidaka and T. Adachi, in: Mechanisms of Saccharide Polymerization and Depolymerization (J. J. Marshall, ed.), p. 101, Academic Press, New York (1980).CrossRefGoogle Scholar
  29. 29.
    Y. Suzuki and T. Imai, Appl. Microbiol. Biotechnol. 21, 20 (1985).CrossRefGoogle Scholar
  30. 30.
    Y. Takasaki, Agric. BioL Chem. 49, 1091 (1985).CrossRefGoogle Scholar
  31. 31.
    Y. Suzuki, T. Nagayama, H. Nakano, and K. Oishi, Starch/Staerke 39, 246 (1987).CrossRefGoogle Scholar
  32. 32.
    Y. Takasaki, Agric. BioL Chem. 51, 9 (1987).CrossRefGoogle Scholar
  33. 33.
    T. Tanaka, E. Ishimoto, Y. Shimomura, M. Taniguchi, and S. Oi, Agric. Biol. Chem. 51, 399 (1987).CrossRefGoogle Scholar
  34. 34.
    I. Palva, Gene 19, 81 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    S. A. Ortlepp, J. F. 011ington, and D. J. McConnell, Gene 23, 267 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    R. P. Piggott, A. Rossiter, S. A. Ortlepp, J. T. Pembroke, and J. F. 011ington, Biochem. Biophys. Res. Commun. 122, 175 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Sibakov, Eur. J. Biochem. 155, 577 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    J. R. Mielenz, Proc. Natl. Acad. Sci. USA 80, 5975 (1983).Google Scholar
  39. 39.
    N. Tsukagoshi, S. Iritani, T. Sasaki, T. Takemura, H. Ihara, Y. Idota, H. Yamagata, and S. Udaka, J. Bacteriol. 164, 1182 (1985).PubMedGoogle Scholar
  40. 40.
    P. Cornelis, C. Digneffe, and K. Willemot, Mol. Gen. Genet. 186, 507 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Yang, A. Galizzi, and D. Henner, Nucleic Acids Res. 11, 237 (1983).PubMedCrossRefGoogle Scholar
  42. 42.
    H. Yamazaki, K. Ohmura, A. Nakayama, Y. Takeichi, K. Otozai, M. Yamasaki, G. Tamura, and K. Yamane, J. Bacteriol. 156, 327 (1983).PubMedGoogle Scholar
  43. 43.
    S. Aiba, K. Kitai, and T. Imanaka, Appl. Environ. Microbiol. 46, 1059 (1983).PubMedGoogle Scholar
  44. 44.
    K. Thudt, K. H. Schleifer, and F. Goetz, Gene 37, 163 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Filloux, P. Joyet, M. Murgier, and A. Lazdunski, FEMS Microbiol. Lett. 30, 203 (1985).Google Scholar
  46. 46.
    S. Hoshiko, O. Makabe, C. Nojiri, K. Katsumata, E. Satoh, and K. Nagaoka, J. Bacteriol. 169, 1029 (1987).PubMedGoogle Scholar
  47. 47.
    T. F. Gorozhankina, M. Yu. Beburov, A. V. Sorokin, and A. I. Stepanov, Dokl. Akad. Nauk SSSR 285, 717 (1985).PubMedGoogle Scholar
  48. 48.
    L. Ruohonen, P. Hackman, P. Lehtovaara, J. K. C. Knowles, and S. Keranen, Gene 59, 161 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    I. S. Pretorius, E. Laing, G. H. J. Pretorius, and J. Marmur, Curr. Genet. 14, 1 (1988).PubMedCrossRefGoogle Scholar
  50. 50.
    J. H. Pazur and T. Ando, J. Biol. Chem. 235, 297 (1960).PubMedGoogle Scholar
  51. 51.
    J. H. Pazur and K. Kleppe, J. Biol. Chem. 237, 1002 (1962).PubMedGoogle Scholar
  52. 52.
    M. Abdullah, I. D. Fleming, P. M. Taylor, and W. J. Whelan, Biochem. J. 89, 35 p (1963).Google Scholar
  53. 53.
    M. M. Meagher and P. J. Reilly, BiotechnoL Bioeng. 34, 689 (1989).PubMedCrossRefGoogle Scholar
  54. 54.
    B. C. Saha and J. G. Zeikus, Starch/Staerke 41, 57 (1989).CrossRefGoogle Scholar
  55. 55.
    P. Manjunath, B. C. Shenoy, and M. R. R. Rao, J. AppL Biochem. 5, 235 (1983).PubMedGoogle Scholar
  56. 56.
    P. Q. for and S. Hayashida, Appl. Environ. Microbiol. 45, 905 (1983).Google Scholar
  57. 57.
    J. H. Pazur and T. Ando, J. BioL Chem. 234, 1966 (1959).PubMedGoogle Scholar
  58. 58.
    D. R. Lineback, I. J. Russell, and C. Rasmussen, Arch. Biochem. Biophys. 134, 539 (1969).PubMedCrossRefGoogle Scholar
  59. 59.
    I. M. Freeberg, Y. Levin, C. M. Kay, W. D. McCubbin, and E. Katchalski-Katzir, Biochim. Biophys. Acta 391, 361 (1975).CrossRefGoogle Scholar
  60. 60.
    B. T. Svensson, T. G. Pedersen, I. Svensson, T. Sakai, and M. Ottesen, Carlberg Res. Commun. 47, 55 (1982).CrossRefGoogle Scholar
  61. 61.
    D. Alazard and J. F. Baldenspenger, Carbohydr. Res. 107, 231 (1982).CrossRefGoogle Scholar
  62. 62.
    P. Manjunath and M. R. R. Rao, J. Biosci. 1, 409 (1979).CrossRefGoogle Scholar
  63. 63.
    J. Abe, Y. Takeda, and S. Hitzukuri, Biochim. Biophys. Acta 703, 26 (1982).PubMedCrossRefGoogle Scholar
  64. 64.
    I. D. Fleming and B. A. Stone, Biochem. J. 97, 13 (1965).Google Scholar
  65. 65.
    K. Venkataramu, P. Manjunath, and M. R. R. Rao, Ind. J. Biochem. Biophys. 12, 107 (1975).Google Scholar
  66. 66.
    S. Hayashida, Agric. BioL Chem. 39, 2093 (1975).CrossRefGoogle Scholar
  67. 67.
    T. Takahashi, N. Inokuchi, and M. Irie, J. Biochem. 89, 1055 (1981).Google Scholar
  68. 68.
    D. R. Lineback and W. E. Baumann, Carbohydr. Res. 14, 341 (1970).CrossRefGoogle Scholar
  69. 69.
    Y. Morita, K. Shimizu, M. Ohga, and T. Korenaga, Agric. Biol. Chem. 30, 114 (1966).CrossRefGoogle Scholar
  70. 70.
    M. N. N. Miah and S. Ueda, Starch/Staerke 29, 191 (1977).CrossRefGoogle Scholar
  71. 71.
    S. Ueda and S. Kano, Starch/Staerke 27, 123 (1975).CrossRefGoogle Scholar
  72. 72.
    T. Takahashi, Y. Tsuchida, and M. Irie, J. Biochem. 84, 1183 (1978).PubMedGoogle Scholar
  73. 73.
    B. C. Saha and S. Ueda, J. Ferment. TechnoL 61, 67 (1983).Google Scholar
  74. 74.
    J. H. Pazur and S. Okada, Carbohydr. Res. 4, 371 (1967).Google Scholar
  75. 75.
    S. Hayashida, T. Nomura, E. Yoshino, and M. Hongo, Agric. BioL Chem. 40, 141 (1976).CrossRefGoogle Scholar
  76. 76.
    S. Hayashida and E. Yoshino, Agric. BioL Chem. 42, 927 (1978).CrossRefGoogle Scholar
  77. 77.
    E. Yoshino and S. Hayashida, J. Ferment. TechnoL 56, 289 (1978).Google Scholar
  78. 78.
    S. Hayashida and P. Q. Flor, Agric. BioL Chem. 45, 2675 (1981).CrossRefGoogle Scholar
  79. 79.
    T. Takahashi, Y. Tsuchida, and M. Irie, J. Biochem. 92, 1623 (1982).PubMedGoogle Scholar
  80. 80.
    E. Boel, I. Hjort, B. Svensson, F. Norris, K. E. Norris, and N. P. Fiil, EMBO J. 3, 1097 (1984).PubMedGoogle Scholar
  81. 81.
    J. H. Nunberg, J. H. Meade, G. Cole, F. C. Lawyer, P. McCabe, V. Schweickart, R. Tal, V. P. Wittman, J. E. Flatgaard, and M. A. Innis, Mol. Cell BioL 4, 2306 (1984).PubMedGoogle Scholar
  82. 82.
    T. Ashikari, N. Nakamura, Y. Tanaka, N. Kiuchi, Y. Shibano, T. Tanaka, T. Amachi, and H. Yoshizumi, Agric. Biot. Chem. 50, 957 (1986).CrossRefGoogle Scholar
  83. 83.
    B. Svensson, K. Larsen, I. Svendsen, and E. Boel, Carlsberg Res. Commun. 48, 529 (1983).CrossRefGoogle Scholar
  84. 84.
    C. T. Greenwood and E. A. Milne, Advan. Carbohydr. Chem. 23, 281 (1968).CrossRefGoogle Scholar
  85. 85.
    G. K. Lee, Ph. D. Dissertation, Iowa State University, Ames, Iowa (1978).Google Scholar
  86. 86.
    Y. Tanaka, T. Ashikari, N. Nakamura, N. Kiuchi, Y. Shibano, T. Amachi, and H. Yoshizumi, Agric. Biol. Chem. 50, 965 (1986).CrossRefGoogle Scholar
  87. 87.
    J. H. Pazur, H. R. Knull, and A. Cepure, Carbohydr. Res. 20, 83 (1971).PubMedCrossRefGoogle Scholar
  88. 88.
    K. Venkataramu, P. Manjunath, and M. R. R. Rao, Ind. J. Biochem. Biophys. 17, 388 (1980).Google Scholar
  89. 89.
    J. H. Pazur, H. R. Knull, and D. L. Simpson, Biochem. Biophys. Res. Commun. 40, 110 (1970).PubMedCrossRefGoogle Scholar
  90. 90.
    D. R. Lineback, L. A. Aira, and R. L. Horner, Cereal Chem. 49, 283 (1972).Google Scholar
  91. 91.
    J. H. Pazur, Y. Tominaga, L. S. Forsberg, and D. L. Simpson, Carbohydr. Res. 84, 103 (1980).PubMedCrossRefGoogle Scholar
  92. 92.
    J. H. Pazur, B. Liu, S. Pyke, and C. R. Baumrucker, J. Protein Chem. 6, 517 (1987).CrossRefGoogle Scholar
  93. 93.
    B. Svensson, K. Larsen, and I. Svendsen, Carlsberg Res. Commun. 48, 517 (1983).CrossRefGoogle Scholar
  94. 94.
    B. Svensson, K. Larsen, and A. Gunnarsson, Eur. J. Biochem. 154, 497 (1986).PubMedCrossRefGoogle Scholar
  95. 95.
    K. Watanabe and T. Fukimbara, Agric. Biol. Chem. 38, 1973 (1974).CrossRefGoogle Scholar
  96. 96.
    K. Watanabe and T. Fukimbara, Agric. Biol. Chem. 39, 1711 (1975).CrossRefGoogle Scholar
  97. 97.
    K. Watanabe, J. Biochem. 80, 379 (1976).Google Scholar
  98. 98.
    K. Hiromi, Biochem. Biophys. Res. Commun. 40, 1 (1970).PubMedCrossRefGoogle Scholar
  99. 99.
    K. Hiromi, Y. Nitta, C. Numata, and S. Ono, Biochim. Biophys. Acta 302, 362 (1973).PubMedCrossRefGoogle Scholar
  100. 100.
    M. M. Meagher, Z. L. Nikolov, and P. J. Reilly, Biotechnol. Bioeng. 34, 681 (1989).PubMedCrossRefGoogle Scholar
  101. 101.
    E. J. Hehre, G. Okada, and D. S. Genghof, Arch. Biochem. Biophys. 135, 75 (1969).CrossRefGoogle Scholar
  102. 102.
    T. Watanabe, S. Kawamura, S. Sasaki, and K. Matsuda, Staerke 21, 18 (1969).CrossRefGoogle Scholar
  103. 103.
    T. Watanabe, S. Kawamura, S. Sasaki, and K. Matsuda, Staerke 21, 44 (1969).CrossRefGoogle Scholar
  104. 104.
    J. H. Pazur, A. Cepure, S. Okada, and L. S. Forsberg, Carbohydr. Res. 58, 193 (1977).PubMedCrossRefGoogle Scholar
  105. 105.
    Z. L. Nikolov, M. M. Meagher, and P. J. Reilly, Biotechnol. Bioeng. 34, 694 (1989).PubMedCrossRefGoogle Scholar
  106. 106.
    M. R. Sierks, Ph. D. Dissertation, Iowa State University, Ames, Iowa (1988).Google Scholar
  107. 107.
    V. B. Rao, N. V. S. Sastri, and P. V. S. Rao, Biochem. J. 193, 379 (1981).Google Scholar
  108. 108.
    W. M. Fogarty and C. P. Benson, Eur. J. Appl. Microbiol. Biotechnol. 18, 271 (1983).CrossRefGoogle Scholar
  109. 109.
    M. Katkocin, N. S. Word, and S.-S. Yang, US Patent 4, 536, 477 (1985).Google Scholar
  110. 110.
    M. A. Innis, M. J. Holland, P. C. McCabe, G. E. Cole, V. P. Wittman, R. Tal, K. W. K. Watt, D. H. Gelfand, J. P. Holland, and J. H. Meade, Science 228, 21 (1985).PubMedCrossRefGoogle Scholar
  111. 111.
    G. E. Cole, P. C. McCabe, D. Inlow, D. H. Gelfand, A. Ben-Bassat, and M. A. Innis, Biol Technology 6, 417 (1988).Google Scholar
  112. 112.
    Y. Tanaka, T. Ashikari, N. Nakamura, N. Kiuchi, Y. Nakao, T. Amachi, and H. Yoshizumi, Agric. Biol. Chem. 50, 1727 (1986).Google Scholar
  113. 113.
    T. Saganuma, M. Ohnishi, K. Hiromi, and Y. Morita, Agric. Biol. Chem. 44, 1111 (1980).CrossRefGoogle Scholar
  114. 114.
    D. French and R. W. Youngquist, Staerke 15, 425 (1963).CrossRefGoogle Scholar
  115. 115.
    E. Y. C. Lee, Arch. Biochem. Biophys. 146, 488 (1971).Google Scholar
  116. 116.
    M. Kato, K. Hiromi, and Y. Morita, J. Biochem. 75, 563 (1974).PubMedGoogle Scholar
  117. 117.
    J. F. Robyt and W. J. Whelan, in: Starch and Its Derivatives (J. R. Radley, ed.), 4th ed., p. 477, Chapman Hall, London (1969).Google Scholar
  118. 118.
    A. K. Balls, R. P. Thompson, and M. K. Walden, J. Biol. Chem. 163, 571 (1946).PubMedGoogle Scholar
  119. 119.
    A. Gertler and Y. Birk, Biochem. J. 95, 621 (1965).PubMedGoogle Scholar
  120. 120.
    K. H. Meyer, P. F. Spahr, and E. H. Fisher, Helv. Chim. Acta 36, 1924 (1953).CrossRefGoogle Scholar
  121. 121.
    R. Tkachuk and K. H. Tipples, Cereal Chem. 43, 62 (1966).Google Scholar
  122. 122.
    R. Shinke and N. Mugibayashi, Agric. BioL Chem. 35, 1381 (1971).CrossRefGoogle Scholar
  123. 123.
    K. Visuri and M. Nummi, Eur. J. Biochem. 28, 555 (1972).PubMedCrossRefGoogle Scholar
  124. 124.
    R. Lundgard and B. Svensson, Carlsberg Res. Commun. 52, 313 (1987).CrossRefGoogle Scholar
  125. 125.
    J. A. Thoma, J. E. Spradlin, and S. Dygert, in: The Enzymes ( P. D. Boyer, ed.), p. 115, Academic Press, New York (1971).Google Scholar
  126. 126.
    B. Mikami, S. Aibara, and Y. Morita, J. Biochem. 88, 103 (1980).PubMedGoogle Scholar
  127. 127.
    Y. Morita, B. Mikami, and S. Aibara, J. Jpn. Soc. Starch Sci. 28, 59 (1981).CrossRefGoogle Scholar
  128. 128.
    J. A. Thoma and D. E. Koshland, Jr., J. Biol. Chem. 235, 2511 (1960).Google Scholar
  129. 129.
    Y. Takasaki, Agric. BioL Chem. 40, 1523 (1976).CrossRefGoogle Scholar
  130. 130.
    T. Nanmori, R. Shinke, K. Aoki, and H. Nishira, Agric. BioL Chem. 47, 941 (1983).CrossRefGoogle Scholar
  131. 131.
    E. J. Napier, US Patent 4,011, 136 (1977).Google Scholar
  132. 132.
    M. Higashihara and S. Okada, Agric. BioL Chem. 38, 1023 (1974).CrossRefGoogle Scholar
  133. 133.
    W. M. Fogarty and P. J. Griffin, J. Appl. Chem. BiotechnoL 25, 229 (1975).Google Scholar
  134. 134.
    S. Murao, K. Ohyama, and M. Arai, Agric. BioL Chem. 43, 719 (1979).CrossRefGoogle Scholar
  135. 135.
    G. J. Shen, B. C. Saha, Y. E. Lee, L. Bhatnagar, and J. G. Zeikus, Biochem. J. 254, 835 (1988).PubMedGoogle Scholar
  136. 136.
    R. Shinke, Y. Kunimi, H. Nishira, J. Ferment. TechnoL 53, 698 (1975).Google Scholar
  137. 137.
    M. Kreis, M. Williamson, B. Buxton, J. Pywell, J. Hejgaard, and I. Svendsen, Eur. J. Biochem. 169, 517 (1987).PubMedCrossRefGoogle Scholar
  138. 138.
    B. Mikami, Y. Morita, and C. Fukazawa, Seikagaku 60, 211 (1988).PubMedGoogle Scholar
  139. 139.
    F. Friedberg and C. Rhodes, J. BacterioL 165, 819 (1986).PubMedGoogle Scholar
  140. 140.
    T. Kawazu, Y. Nakanishi, N. Uozumi, T. Sasaki, H. Yamagata, H. Tsukagoshi, and S. Udaka, J. BacterioL 169, 1564 (1987).PubMedGoogle Scholar
  141. 141.
    N. Kitamoto, H. Yamagata, T. Kato, N. Tsukagoshi, and S. Udaka, J. BacterioL 170, 5848 (1988).PubMedGoogle Scholar
  142. 142.
    H. Outtrup and B. E. Norman, Starch/Staerke 36, 405 (1984).CrossRefGoogle Scholar
  143. 143.
    K. Wako, C. Takahashi, S. Hashimoto, and J. Kanaeda, Denpun Kagaku 26, 175 (1979).Google Scholar
  144. 144.
    J. F. Robyt and R. J. Ackerman, Arch. Biochem. Biophys. 145, 105 (1971).PubMedCrossRefGoogle Scholar
  145. 145.
    J. Schmidt and M. John, Biochim. Biophys. Acta 566, 88 (1979).PubMedCrossRefGoogle Scholar
  146. 146.
    Y. Sakano, Y. Kashiwagi, and T. Kobayashi, Agric. BioL Chem. 46, 639 (1982).CrossRefGoogle Scholar
  147. 147.
    M. J. Lee and M. Jae, Han’guk Nonghawa Hakhoechi 28, 1 (1985).Google Scholar
  148. 148.
    T. Kimura, M. Ogata, M. Yoshida, and T. Nakakuki, BiotechnoL Bioeng. 32, 669 (1988).PubMedCrossRefGoogle Scholar
  149. 149.
    B. Y. Tao, P. J. Reilly, and J. F. Robyt, Biochim. Biophys. Acta 995, 214 (1989).PubMedCrossRefGoogle Scholar
  150. 150.
    K. Kainuma, S. Kobayashi, T. Ito, and S. Suzuki, FEBS Lett. 26, 281 (1972).PubMedCrossRefGoogle Scholar
  151. 151.
    K. Kainuma, K. Wako, S. Kobayashi, A. Nogami, and S. Suzuki, Biochim. Biophys. Acta 410, 333 (1975).PubMedCrossRefGoogle Scholar
  152. 152.
    T. Nakakuki, M. Monma, K. Azuma, S. Kobayashi, and K. Kainuma, Denpun Kagaku 29, 179 (1982).Google Scholar
  153. 153.
    Y. Takasaki, Denpun Kagaku 29, 145 (1982).Google Scholar
  154. 154.
    H. Taniguchi, C. M. Jae, N. Yoshigi, and Y. Maruyama, Agric. BioL Chem. 47, 511 (1983).CrossRefGoogle Scholar
  155. 155.
    B. E. Norman, in: Enzymes and Food Processing ( G. G. Birch, N. Blakebrough, and K. J. Parker, eds.), p. 15, Applied Science, London (1981).CrossRefGoogle Scholar
  156. 156.
    R. E. Hebeda, in: Corn: Chemistry and Technology ( S. A. Watson and P. E. Ramstad, eds.), p. 501, American Association of Cereal Chemists, St. Paul (1987).Google Scholar
  157. 157.
    C. G. Bohnenkamp and P. J. Reilly, BiotechnoL Bioeng. 22, 1753 (1980).CrossRefGoogle Scholar
  158. 158.
    N. W. Lutzen, Adv. Biotechnol. 2, 161 (1981).Google Scholar
  159. 159.
    B. C. Saha and J. G. Zeikus, BiotechnoL Bioeng. 34, 299 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Zivko L. Nikolov
    • 1
  • Peter J. Reilly
    • 2
  1. 1.Department of Food TechnologyIowa State UniversityAmesUSA
  2. 2.Department of Chemical EngineeringIowa State UniversityAmesUSA

Personalised recommendations