Vaccines against Intracellular Pathogens

  • Raúl G. Barletta
  • Ruben O. Donis
  • Ofelia Chacón
  • Homayoun Shams
  • Jeffrey D. Cirillo
Part of the Subcellular Biochemistry book series (SCBI, volume 33)

Abstract

Vaccination against intracellular pathogens presents unique problems that are specific to the growth environment used by these organisms. For all vaccines it is important to determine the best antigen(s) and inoculation method that will induce the proper strength and type of immune response as well as protect against subsequent challenge. With intracellular pathogens, however, the need for a cell-mediated immune response, limited direct access of the immune system to the infectious agent and potential for control of antigen processing and presentation in the host cell by the pathogen make vaccine design even more complex. The majority of the vaccines in use today, including those used for intracellular pathogens, were developed using traditional methods and the efficacies and inoculation methods determined empirically. The advent of molecular biology and the development of a better understanding of the mechanisms of immune protection should allow a more directed approach to vaccine design. Using Salmonella and mycobacteria as model intracellular pathogens, we review recent advances in our understanding of potential mechanisms of immune protection and methods of vaccine design and delivery. We propose directions for further study and strategies for the design and delivery of vaccines against intracellular pathogens based on current technology.

Keywords

Human Immunodeficiency Virus Mycobacterium Tuberculosis Listeria Monocytogenes Vaccine Strain Typhoid Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelhak, S., Louzir, H., Timm, J., Blel, L., Benlasfar, Z., Lagranderie, M., Gheorghiu, M., Dellagi, K., and Gicquel, B., 1995, Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice, Microbiology 141: 1585–1592.PubMedCrossRefGoogle Scholar
  2. Ada, G., 1997, Overview of vaccines, Mol. Biotechnol. 8: 123–134.PubMedCrossRefGoogle Scholar
  3. Aldovini, A., and Young, R.A., 1991, Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines, Nature 351: 479–482.PubMedCrossRefGoogle Scholar
  4. Andersen, A.B., andersen, P., and Ljungqvist, L., 1992, Structure and function of a 40,000molecular-weight protein antigen of Mycobacterium tuberculosis, Infect. Immun. 60: 2317–2323.PubMedGoogle Scholar
  5. Andersen, P., 1994, Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins, Infect. Immun. 62: 2536–2544.PubMedGoogle Scholar
  6. Armstrong, J.A., and Hart, P.D., 1975, Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli, J. Exp. Med. 142: 1–16.PubMedCrossRefGoogle Scholar
  7. Azad, A.K., Sirakova, T.D., Fernandes, N.D., and Kolattukudy, P.E., 1997, Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria, J. Biol. Chem. 272: 16741–16745.PubMedCrossRefGoogle Scholar
  8. Azad, A.K., Sirakova, T.D., Rogers, L.M., and Kolattukudy, P.E., 1996, Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides, Proc. Natl. Acad. Sci. USA 93: 4787–4792.PubMedCrossRefGoogle Scholar
  9. Baldwin, S.L., D’Souza, C., Roberts, A.D., Kelly, B.P., Frank, A.A., Lui, M.A., Ulmer, J.B., Huygen, K., McMurray, D.M., and Orme, I.M., 1998, Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis, Infect. Immun. 66: 2951–2059.PubMedGoogle Scholar
  10. Bange, F.C., Brown, A.M., and Jacobs, W.R., Jr., 1996, Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages, Infect. Immun. 64: 1794–1799.PubMedGoogle Scholar
  11. Bardarov, S., Kriakov, J., Carriere, C., Yu, S., Vaamonde, C., McAdam, R.A., Bloom, B.R., Hatfull, G.E. and Jacobs, W.R., Jr., 1997, Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA 94: 10961–10966.PubMedCrossRefGoogle Scholar
  12. Barletta, R.G., Snapper, S.B., Cirillo, J.D., Connell, N.D., Kim, D.D., Jacobs, W.R., Jr., and Bloom, B.R., 1990, Recombinant BCG as a candidate oral vaccine, Res. Microbiol. 141: 931–939.PubMedCrossRefGoogle Scholar
  13. Barnes, P.F., Abrams, J.S., Lu, S., Sieling, P.A., Rea, T.H., and Modlin, R.L., 1993, Patterns of cytokine production by mycobacterium-reactive human T-cell clones, Infect. Immun. 61: 197–203.PubMedGoogle Scholar
  14. Beckman, E.M., Porcelli, S.A., Morita, C.T., Behar, S.M., Furlong, S.T., and Brenner, M.B., 1994, Recognition of a lipid antigen by CD1-restricted alpha beta+ Tcells, Nature 372: 691–694.PubMedCrossRefGoogle Scholar
  15. Berthet, F.X., Lagranderie, M., Gounon, P., C., L.-W., Ensergueix, D., Chavarot, P., Thouron, F, Maranghi, E., Pelicic, V., Portnoi, D., Marchai, G., and Gicquel, B., 1998, Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene., Science 282: 759–762.PubMedCrossRefGoogle Scholar
  16. Bigi, F., Alito, A., Fisanotti, J.C., Romano, M.I., and Cataldi, A., 1995, Characterization of a novel Mycobacterium bovis secreted antigen containing PGLTS repeats, Infect. Immun. 63: 2581–2586.PubMedGoogle Scholar
  17. Blanden, R.V., Mackaness, G.B., and Collins, EM., 1966, Mechanisms of acquired resistance in mouse typhoid, J. Exp. Med. 124: 585–600.PubMedCrossRefGoogle Scholar
  18. Bloom, B.R., 1994, Tuberculosis: pathogenesis, protection, and control, ASM Press, Washington, D. C.Google Scholar
  19. Bloom, B.R., and Murray, C.J.L., 1992, Tùberculosis: Commentary on a reemergent killer, Science 257: 1055–1064.PubMedCrossRefGoogle Scholar
  20. Bolin, C.A., Whipple, D.L., Khanna, K.V., Risdahl, J.M., Peterson, P.K., and Molitor, T. W., 1997, Infection of swine with Mycobacterium bovis as a model of human tuberculosis, J. Infect. Dis. 176: 1559–1566.PubMedCrossRefGoogle Scholar
  21. Brett, S.J., Rhodes, J., Liew, F.Y., and Tite, J.P., 1993, Comparison of antigen presentation of influenza A nucleoprotein expressed in attenuated AroA-Salmonella typhimurium with that of live virus, J. Immunol. 150: 2869–2884.PubMedGoogle Scholar
  22. Buddle, B.M., Keen, D., Thomson, A., Jowett, G., McCarthy, A.R., Heslop, J., De Lisle, G.W., Stanford, J.L., and Aldwell, F.E., 1995, Protection of cattle from bovine tuberculosis by vaccination with BCG by the respiratory or subcutaneous route, but not by vaccination with killed Mycobacterium vaccae, Res. Vet. Sci. 59: 10–16.PubMedCrossRefGoogle Scholar
  23. Chatfield, S.N., Dorman, C.J., Hayward, C., and Dougan, G., 1991, Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo, Infect. Immun. 59: 449–452.PubMedGoogle Scholar
  24. Chatfield, S.N., Strahan, K., Pickard, D., Charles, I.G., Hormaeche, C.E., and Dougan, G., 1992, Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model, Microb. Pathog. 12: 145–151.PubMedCrossRefGoogle Scholar
  25. Chen, L., Xie, Q.W., and Nathan, C., 1998, Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates, Mol. Cell 1: 795–805.PubMedCrossRefGoogle Scholar
  26. Christensen, H., Nordentoft, S., and Olsen, J.E., 1998, Phylogenetic relationships of Salmonella based on rRNA sequences, Int. J. Syst. Bacteriol. 48: 605–610.PubMedCrossRefGoogle Scholar
  27. Cirillo, J.D., Stover, C.K., Bloom, B.R., Jacobs, W.R., Jr., and Barletta, R.G., 1995, Bacterial vaccine vectors and bacillus Calmette-Guérin, Clin. Infect. Dis. 20: 1001–1009.PubMedCrossRefGoogle Scholar
  28. Clemens, D.L., and Horwitz, M.A., 1995, Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, J. Exp. Med. 181: 257–270.PubMedCrossRefGoogle Scholar
  29. Clemens, D.L., Lee, B.Y., and Horwitz, M.A., 1995, Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction, J. Bacteriol. 177: 5644–5652.PubMedGoogle Scholar
  30. Colditz, G.A., Brewer, T.F., Berkey, C.S., Wilson, M.E., Burdick, E., Fineberg, H.V., and Mosteller, E, 1994, Efficacy of BCG vaccine in the prevention of tuberculosis, DAMA 271: 698–702.Google Scholar
  31. Cole, S.T., Brosch, R., Parkhill, J., Gamier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd,Tekaia, E, Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A, Rajandream, R.-A., Rogers, J, Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., and Barrel!, B.G., 1998, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature 393: 537–544.Google Scholar
  32. Collins, D.M., Kawakami, R.P., de Lisle, G.W., Pascopella, L., Bloom, B.R., and Jacobs, W.R.J., 1995, Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex, Proc. Natl. Acad. Sci. USA 92: 8036–8040.PubMedCrossRefGoogle Scholar
  33. Collins, F.M., 1969, Effect of specific immune mouse serum on the growth of Salmonella enteritidis in mice preimmunized with living or ethyl alcohol-killed vaccines, J. Bacteriol. 97: 676–683.PubMedGoogle Scholar
  34. Collins, EM., 1974, Vaccines and cell-mediated immunity, Bacteriol. Rev. 38: 371–402.PubMedGoogle Scholar
  35. Collins, F.M., Mackaness, G.B., and Blanden, R.V., 1966, Infection-immunity in experimental salmonellosis, J Exp Med 124: 601–619.PubMedCrossRefGoogle Scholar
  36. Convit, J., Sampson, C., Zuniga, M., Smith, P.G., Plata, J., Silva, J., Molina, J., Pinardi, M.E., Bloom, B.R., and Salgado, A., 1992, Immunoprophylactic trial with combined Mycobacterium leprae/BCG vaccine against leprosy: preliminary results, Lancet 339: 446–450.PubMedCrossRefGoogle Scholar
  37. Cooper, G.L., Nicholas, R.A., Cullen, G.A., and Hormaeche, C.E., 1990, Vaccination of chickens with a Salmonella enteritidis aroA live oral Salmonella vaccine, Microb. Pathog. 9: 255–265.PubMedCrossRefGoogle Scholar
  38. Corthesy-Theulaz, I.E., Hopkins, S., Bachmann, D., Saldinger, P.F., Porta, N., Haas, R., ZhengXin, Y., Meyer, T., Bouzourene, H., Blum, A.L., and Kraehenbuhl, J.P., 1998, Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium pholx expressing urease A and B subunits, Infect. Immun. 66: 581–586.PubMedGoogle Scholar
  39. Curtiss, R., III., and Kelly, S.M., 1987, Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic, Infect. Immun. 55: 3035–3043.Google Scholar
  40. Cvejetanovich, B., and Uemura, K., 1965, The present status of field and laboratory studies of typhoid and paratyphoid vaccines with special reference to studies sponsored by W.H.O., Bull. W. H.O 32: 29–36.Google Scholar
  41. da Fonseca, D.P., Joosten, D., van der Zee, R., Jue, D.L., Singh, M., Vordermeier, H.M., Snippe, H., and Verheul, A.F., 1998, Identification of new cytotoxic T-cell epitopes on the 38 kilodalton lipoglycoprotein of Mycobacterium tuberculosis by using lipopeptides, Infect. Immun. 66: 3190–3197.PubMedGoogle Scholar
  42. Dannenberg, A.M., Jr., 1993, Immunopathogenesis of pulmonary tuberculosis, Hosp. Pract. 28: 51–58.Google Scholar
  43. Darji, A., Guzman, C.A., Gerstel, B., Wachholz, P., Timmis, K.N., Wehland, J., Chakraborty, T., and Weiss, S.,1997, Oral somatic transgene vaccination using attenuated S. typhimurium, Cell 91: 765–775.Google Scholar
  44. Daugelat, S., Guile, H., Schoel, B., and Kaufmann, S.H., 1992, Secreted antigens of Mycobacterium tuberculosis: characterization with T lymphocytes from patients and contacts after two-dimensional separation, J. Infect. Dis. 166: 186–190.PubMedCrossRefGoogle Scholar
  45. Di Fabio, S., Medaglini, D., Rush, C.M., Corrias, E, Panzini, G.L., Pace, M., Verani, E, Pozzi, G., and Titti, F., 1998, Vaginal immunization of Cynomolgus monkeys with Streptococcus gordonii expressing HIV-1 and HPV 16 antigens, Vaccine 16:485;-492.Google Scholar
  46. Dorman, C.J., Chatfield, S., Higgins, C.E, Hayward, C., and Dougan, G., 1989, Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo, Infect. Immun. 57: 2136–2140.PubMedGoogle Scholar
  47. Dunstan, S.J., Simmons, C.P., and Strugnell, R.A., 1998, Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen, Infect Immun 66: 732–740.PubMedGoogle Scholar
  48. Dusek, D.M., Progulske-Fox, A., and Brown, T.A., 1994, Systemic and mucosa! immune responses in mice orally immunized with avirulent Salmonella typhimurium expressing a cloned Porphyromonas gingivalis hemagglutinin, Infect Immun 62: 1652–1657.PubMedGoogle Scholar
  49. Eisenstein,T.K., 1998, Intracellular pathogens: the role of antibody-mediated protection in Salmonella infection [letter], Trends. MicrobioL 6: 135–136.PubMedCrossRefGoogle Scholar
  50. Eisenstein, T.K., and Sultzer, B.M., 1983, Immunity to Salmonella infection, Adv. Exp. Med. BioL 162: 261–296.PubMedCrossRefGoogle Scholar
  51. Elanschezhiyan, M., Karem, K.L., and Rouse, B.T., 1997, DNA vaccines-a modern gimmick or a boon to vaccinology?, Crit. Rev. Immunol 17: 139–154.CrossRefGoogle Scholar
  52. Elhay, M.J., and andersen, P., 1997, Immunological requirements for a subunit vaccine against tuberculosis, Immunol. Cell. Biol. 75: 595–603.PubMedCrossRefGoogle Scholar
  53. Elhay, M.J., Oettinger, T., and andersen, P., 1998, Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig, Infect. Immun. 66: 3454–3456.PubMedGoogle Scholar
  54. Emoto, M., Emoto, Y., and Kaufmann, S.H., 1997, Bacille Calmette Guerin and interleukin-12 down-modulate interleukin-4-producing CD4+ NK1+ T lymphocytes, Eur. J. Immunol. 27: 183–188.PubMedCrossRefGoogle Scholar
  55. Falcone, V., Bassey, E., Jacobs, W., Jr., and Collins, E, 1995, The immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes, Microbiology 141: 1239–1245.PubMedCrossRefGoogle Scholar
  56. Feigner, P.L., and Rhodes, G., 1991, Gene therapeutics, Nature 349: 351–352.CrossRefGoogle Scholar
  57. Fenton, M.J., and Vermeulen, M.W., 1996, Immunopathology of tuberculosis: roles of macrophages and monocytes, Infect. Immun. 54: 683–690.Google Scholar
  58. Fields, P.I., Groisman, E.A., and Heffron, E, 1989, A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells, Science 243: 1059–1061.PubMedCrossRefGoogle Scholar
  59. Fine, P.E.M., 1988, BCG vaccination against tuberculosis and leprosy, Brit. Med. Bull. 44: 691–703.PubMedGoogle Scholar
  60. Fine, P.E.M., Sterne, J.A.C., Pionnighaus, J.M., and Rees, R.J.W., 1994, Delayed-type hyper- sensitivity, mycobacterial vaccines and protective immunity, Lancet 344: 1245–1249.PubMedCrossRefGoogle Scholar
  61. Fluckiger, U., Jones, K.F., and Fishetti, V.A., 1998, Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells, Infect. Immun. 66: 974–979.PubMedGoogle Scholar
  62. Forrest, B.D., LaBrooy, J.T., Beyer, L., Dearlove, C.E., and Shearman, D.J., 1991, The human humoral immune response to Salmonella typhi Ty21a, J. Infect. Dis. 163: 336–345.PubMedCrossRefGoogle Scholar
  63. Fu, Y., and Galan, J.E., 1998, The Salmonella typhimurium tyrosine phosphatase SptP is trans-located into host cells and disrupts the actin cytoskeleton, Mol. Microbial. 27: 359–368.CrossRefGoogle Scholar
  64. Galan, J.E.,1996, Molecular genetic bases of Salmonella entry into host cells, Mol. MicrobioL 20: 263–271.Google Scholar
  65. Galan, J.E., and Bliska, J.B., 1996, Cross-talk between bacterial pathogens and their host cells, Annu. Rev. Cell. Dev. Biol 12: 221–255.PubMedCrossRefGoogle Scholar
  66. Galan, J.E., and Curtiss, R.D., 1989, Virulence and vaccine potential of phoP mutants of Salmonella typhimurium, Microb. Pathog. 6: 433–443.PubMedCrossRefGoogle Scholar
  67. Galan, J.E., Gomez-Duarte, O.G., Losonsky, G.A., Halpern, J.L., Lauderbaugh, C.S., Kaintuck, S., Reymann, M.K., and Levine, M.M., 1997, A murine model of intranasal immunization to assess the immunogenicity of attenuated Salmonella typhi live vector vaccines in stimulating serum antibody responses to expressed foreign antigens, Vaccine 15: 700–708.CrossRefGoogle Scholar
  68. Germanier, R., 1984, in Bacterial Vaccines, (R. Germanier, ed.), Academic Press, Orlando, FL, pp. 137–166.Google Scholar
  69. Germanier, R., and Furer, E., 1971, Immunity in experimental salmonellosis. II. Basis for the avirulence and protective capacity of galE mutants of Salmonella typhimurium, Infect. Immun. 4: 663–673.Google Scholar
  70. Germanier, R., and Furer, E., 1975, Isolation and characterization of galE mutant Ty21a of Salmonella typhi: a candidate strain for a live oral typhoid vaccine, J. Infect. Dis. 141: 553–558.Google Scholar
  71. Gilman, R.H., Hornick, R.B., Woodard, W.E., DuPont, H.L., Snyder, M.J., Levine, M.M., and Libonati, J.P., 1977, Evaluation of a UDP-glucose-4-epimeraseless mutant of Salmonella typhi as a live oral vaccine, J. Infect. Dis. 136: 717–723.Google Scholar
  72. Glatman-Freedman, A., and Casadevall, A., 1998, Serum therapy for tuberculosis revisited: Reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis, Clin. Microbiol. Rev. 11: 514–532.Google Scholar
  73. Gormus, B.J., Baskin, G.B., Xu, K., Bohm, R.P., Mack, P.A., Ratterree, M.S., Cho, S.N., Meyers, W.M., and Walsh, G.P., 1998, Protective immunization of monkeys with BCG or BCG plus heat-killed Mycobacterium leprae: clinical results, Lepr. Rev. 69: 6–23.PubMedGoogle Scholar
  74. Guleria, I., Teitelbaum, R., McAdam, R.A., Kalpana, G., Jacobs, W.R., Jr., and Bloom, B.R., 1996, Auxotrophic vaccines for tuberculosis, Nat. Med. 2: 334–337.PubMedCrossRefGoogle Scholar
  75. Harboe, M., Nagai, S., Patarroyo, M.E., Torres, M.L., Ramirez, C., and Cruz, N., 1986, Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG, Infect. Immun. 52: 293–302.Google Scholar
  76. Harboe, M., Oettinger, T., Wiker, H.G., Rosenkrands, I., and andersen, R, 1996, Evidence for occurrence of the ESAT 6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG, Infect. Immun. 64: 16–22.Google Scholar
  77. Harding, CV., 1996, Class I MHC presentation of exogenous antigens, J. Clin. Immun. 16: 90–96.Google Scholar
  78. Hariharan, M.J., Driver, D.A., Townsend, K., Brumm, D., Polo, J.M., Belli, B.A., Catton, D.J., Hsu, D., Mittelstaedt, D., McCormack, J.E., Karavodin, L., Dubensky, T.W., Jr., Chang, S.M., and Banks, T.A., 1998, DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector, J. Virol. 72: 950–958.PubMedGoogle Scholar
  79. Hess, J., Miko, D., Catic, A., Lehmensiek, V., Russell, D.G., and Kaufmann, S.H., 1998, Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes, Proc. Natl. Acad. Sci. USA 95: 5299–5304.Google Scholar
  80. Heym, B., Stavropoulos, E., Honore, N., Domenech, P., Saint-Joanis, B., Wilson, T.M., Collins, D.M., Colston, M.J., and Cole, S.T., 1997, Effects of overexpression of the alkyl hydro-peroxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis, Infect. Immun. 65: 1395–1401.Google Scholar
  81. Hohmann, E.L., Oletta, C.A., Killeen, K.P., and Miller, S.I., 1996a, phoP/phoQ-deleted Salmonella typhi (4800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers, J. Infect. Dis. 173: 1408–1414.Google Scholar
  82. Hohmann, E.L., Oletta, C.A., and Miller, S.I., 1996b, Evaluation of a phoPlphoQ-deleted, aroA-deleted live oral Salmonella typhi vaccine strain in human volunteers, Vaccine 14: 19–24.PubMedCrossRefGoogle Scholar
  83. Hoiseth, S.K., and Stocker, B.A., 1981, Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines, Nature 291: 238–239.PubMedCrossRefGoogle Scholar
  84. Honda, M., Matsuo, K., Nakasone, T., Okamoto, Y., Yoshizaki, H., Kitamura, K., Sugiura, W., Watanabe, K., Fukushima, Y., Haga, S., Katsura, Y., Tasaka, H., Komuro, K., Yamada, T., Asano, T., Yamazaki, A., and Yamazaki, S., 1995, Protective immune responses induced by secretion of a chimeric soluble protein from a recombinant Mycobacterium bovis bacillus Calmette-Guerin vector candidate vaccine for human immunodeficiency virus type 1 in small animals, Proc. Natl. Acad. Sci. USA 92: 10693–10697.PubMedCrossRefGoogle Scholar
  85. Hone, D.M., Harris, A.M., Chatfield, S., Dougan, G., and Levine, M.M., 1991, Construction of genetically defined double aro mutants of Salmonella typhi, Vaccine 9: 810–816.PubMedCrossRefGoogle Scholar
  86. Hopkins, S.A., and Kraehenbuhl, J.P., 1997, Dendritic cells of the murine Peyer’s patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome, Adv. Exp. Med. Biol. 417: 105–109.PubMedGoogle Scholar
  87. Hornick, R.B., Greisman, S.E., Woodward,T.E., DuPont, H.L., Dawkins, A.T., and Snyder, M.J., 1970, Typhoid fever: pathogenesis and immunologic control. 2, N. Engl. J. Med. 283: 739–746.CrossRefGoogle Scholar
  88. Horwitz, M.A., Lee, B.W., Dillon, B.J., and Harth, G., 1995, Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA 92: 1530–1534.PubMedCrossRefGoogle Scholar
  89. Hostoffer, R.W., Krukovets, I., and Berger, M., 1994, Enhancement by tumor necrosis factor-alpha of Fc alpha receptor expression and IgA-mediated superoxide generation and killing of Pseudomonas aeruginosa by polymorphonuclear leukocytes, J. Infect. Dis. 170: 82–87.PubMedCrossRefGoogle Scholar
  90. Jacobs, W.R., Jr., Kalpana, G.V., Cirillo, J.D., Pascopella, L., Udani, R.A., Jones, W.D., Jr., Barletta, R.G., and Bloom, B.R., 1991, Genetic systems for the mycobacteria, Meth. Enzymol. 204: 537–555.CrossRefGoogle Scholar
  91. Jondal, M., Schirmbeck, R., and Reimann, J., 1996, MHC class I-restricted CTL responses to exogenous antigens, Immunity 5: 295–302.PubMedCrossRefGoogle Scholar
  92. Jones, B.D., and Falkow, S., 1996, Salmonellosis: host immune responses and bacterial virulence determinants, Annu. Rev. Immunol. 14: 533–561.PubMedCrossRefGoogle Scholar
  93. Jones, P.W., Dougan, G., Hayward, C., Mackensie, N., Collins, P., and Chatfield, S.N.,1991, Oral vaccination of calves against experimental salmonellosis using a double aro mutant of Salmonella typhimurium, Vaccine 9:29–34.Google Scholar
  94. Joo, I., 1971, Scientific Publication # 226,World Health Organization.Google Scholar
  95. Kang, B.K., and Schlesinger, L.S., 1998, Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan, Infect. Immun. 66: 2769–2777.PubMedGoogle Scholar
  96. Kantele, A., Arvilommi, H., Kantele, J.M., Rintala, L., and Makela, RH., 1991, Comparison of the human immune response to live oral, killed oral or killed parenteral Salmonella typhi Ty21a vaccines, Microb. Pathog. 10: 117–126.PubMedCrossRefGoogle Scholar
  97. Kim, D.T., Mitchell, D.J., Brockstedt, D.G., Fong, L., Nolan, G.P., Fathman, C.G., Engleman, E.G., and Rothbard, J.B., 1997, Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide, J. Immunol. 159: 1666–1668.PubMedGoogle Scholar
  98. Kremer, L., Riveau, G., Baulard, A., Capron, A., and Locht, C., 1996, Neutralizing antibody responses elicited in mice immunized with recombinant bacillus Calmette-Guerin producing the Schistosoma mansoni glutathione S-transferase, J. Immunol. 156: 4309–4317.PubMedGoogle Scholar
  99. Lagranderie, M., Balazue, A.M., Gicquel, B., and Gheorghiu, M., 1997, Oral immunization with recombinant Mycobacterium bovis BCG simian immunodeficiency virus nef induces local and systemic cytotoxic T-lymphocytes responses in mice, J. Virol. 71: 2303–2309.PubMedGoogle Scholar
  100. Lagranderie, M.R., Balazue, A.M., Deriaud, E., Leclerc, C.D., and Gheorghiu, M., 1996, Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains, Infect. Immun. 64: 1–9.PubMedGoogle Scholar
  101. Lang, E, Peyrat, M.A., Constant, P., Davodeau, E, David-Ameline, J., Poquet, Y., Vie, H., Fournie, J.J., and Bonneville, M., 1995, Early activation of human Vy9V62 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands, J. Immunol. 154: 5986–5994.PubMedGoogle Scholar
  102. Langermann, S., Palaszynski, S., Sadziene, A., Stover, C.K., and Koenig, S., 1994, Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi, Nature 372: 552–555.PubMedCrossRefGoogle Scholar
  103. Launois, P., DeLeys, R., N’Diaye Niang, M., Drowart, A., Adrian, M., Dierckx, P., Cartel, J.L., Sarthou, J.L:, Van Vooren, J.P., and Huygen, K., 1994, T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy, Infect. Immun. 62: 3679–3687.Google Scholar
  104. Levine, M.M., DuPont, H.L., Hornick, R.B., Snyder, M.J., Woodward, W., Gilman, R.H., and Libonati, J.P., 1976, Attenuated, streptomycin-dependent Salmonella typhi oral vaccine: potential deleterious effects of lyophilization, J. Infect. Dis. 133: 424–429.PubMedCrossRefGoogle Scholar
  105. Levine, M.M., Galen, J., Barry, E., Noriega, F., Chatfield, S., Sztein, M., Dougan, G., and Tacket, C., 1996, Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors, J. Biotechnol. 44: 193–196.PubMedCrossRefGoogle Scholar
  106. Li, Z., Kelley, C., Collins, E, Rouse, D., and Morris, S., 1998, Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs, J. Infect. Dis. 177: 1030–1035.PubMedCrossRefGoogle Scholar
  107. Lockman, H.A., and Curtiss, R.D., 1990, Occurrence of secondary attenuating mutations in avirulent Salmonella typhimurium vaccine strains, J. Infect. Dis. 162: 1397–1400.PubMedCrossRefGoogle Scholar
  108. Londono, L.P., Chatfield, S.,Tindle, R.W., Herd, K., Gao, X.M., Frazer, I., and Dougan, G., 1996, Immunisation of mice using Salmonella typhimurium expressing human papillomavirus type 16 E7 epitopes inserted into hepatitis B virus core antigen, Vaccine 14: 545–552.Google Scholar
  109. Lowrie, D.B., Silva, C.L., Colston, M.J., Ragno, S., and Tascon, R.E., 1997, Protection against tuberculosis by a plasmid DNA vaccine, Vaccine 15: 834–838.PubMedCrossRefGoogle Scholar
  110. Lu, M.C., Lien, M.H., Becker, R.E., Heine, H.C., Buggs, A.M., Lipovsek, D., Gupta, R., Robbins, P.W., Grosskinsky, C.M., Hubbard, S.C., and Young, R.A., 1987, Genes for immunodominant protein antigens are highly homologous in Mycobacterium tuberculosis, Mycobacterium africanum, and the vaccine strain Mycobacterium bovis BCG, Infect. Immun. 5: 2378–2382.Google Scholar
  111. Mackaness, G.B., 1967, The relationship of delayed hypersensitivity to acquired cellular resistance, Br. Med. Bull. 23: 52–54.PubMedGoogle Scholar
  112. Mackaness, G.B., and Blanden, R.V., 1967, Cellular immunity, Prog. Allergy 11: 89–140.PubMedGoogle Scholar
  113. Mahairas, G.G., Sabo, P.J., Hickey, M.J., Singh, D.C., and Stover, C.K., 1996, Molecular analy-sis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis, J. Bacteriol. 178: 1274–1282.PubMedGoogle Scholar
  114. Manickan, E., Karem, K.L., and Rouse, B.T., 1997, DNA vaccines—a modern gimmick or a boon to vaccinology?, Crit. Rev. Immunol. 17: 139–154.PubMedCrossRefGoogle Scholar
  115. Mastroeni, P., Villarreal-Ramos, B., and Hormaeche, C.E., 1993, Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice • requires both immune serum and T cells, Infect. Immun. 61: 3981–3984.PubMedGoogle Scholar
  116. Matsumoto, S., Yanagi, T., Ohara, N., Wada, N., Kanbara, H., and Yamada, T., 1996, Stable expression and secretion of the B-cell epitope of rodent malaria from Mycobacterium bovis BCG and induction of long-lasting humoral response in mouse, Vaccine 14: 54–60.PubMedCrossRefGoogle Scholar
  117. McAdam, R.A., Weisbrod, T.R., Martin, J., Scuderi, J.D., Brown,A.M., Cirillo, J.D., Bloom, B.R., and Jacobs, W.R., Jr., 1995, In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis, Infect. Immun. 63: 1004–1012.Google Scholar
  118. McAleer, W.J., Buynak, E.B., Maigetter, R.Z., Wampler, D.E., Miller, W.J., and Hilleman, M.R., 1992, Human hepatitis B vaccine from recombinant yeast. 1984 [classical article], Biotechnology 24: 500–502.PubMedGoogle Scholar
  119. McGregor, D.D., Koster, F.T., and Mackaness, G.B., 1970, The short lived small lymphocyte as a mediator of cellular immunity, Nature 228: 855–856.PubMedCrossRefGoogle Scholar
  120. Mel, D.M., Arsic, B.L., Radovanovic, M.L., Kaljalovic, R., and Litvinjenko, S., 1974, Safety tests in adults and children with live oral typhoid vaccine, Acta. Microbiol. Acad. Sci. Hung. 21: 161–166.Google Scholar
  121. Michetti, P., Mahan, M.J., Slauch, J.M., Mekalanos, J.J., and Neutra, M.R., 1992, Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium, Infect. Immun. 60: 1786–1792.PubMedGoogle Scholar
  122. Michetti, P., Porta, N., Mahan, M.J., Slauch, J.M., Mekalanos, J.J., Blum, A.L., Kraehenbuhl, J.P., and Neutra, M.R., 1994, Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium [see comments], Gastroenterology 107: 915–923.PubMedGoogle Scholar
  123. Miller, S.I., Kukral,A.M., and Mekalanos, J.J.,1989,A two-component regulatory system (PhoP PhoQ) controls Salmonella typhimurium virulence, Proc. Natl. Acad. Sci. USA 86: 5054–5058.Google Scholar
  124. Mills, S.D., Ruschkowski, S.R., Stein, M.A., and Finlay, B.B., 1998, Trafficking of porin-deficient Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are defective for the formation of Salmonella-induced filaments, Infect. Immun. 66: 1806–1811.Google Scholar
  125. Mosmann,T.R., and Coffman, R.L., 1989, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7: 145–173.PubMedCrossRefGoogle Scholar
  126. Mosser, D.M., 1994, Receptors on phagocytic cells involved in microbial recognition, Immunol. Ser. 60: 99–114.PubMedGoogle Scholar
  127. Munk, M.E., and Emoto, M., 1995, Functions of T-cell subsets and cytokines in mycobacterial infections, Bur. Respir. J. Suppl. 20: 668S - 6755.Google Scholar
  128. Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D.J., Zajac, A.J., Miller, J.D., Slansky, J., and Ahmed, R., 1998, Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection, Immunity 8: 177–187.PubMedCrossRefGoogle Scholar
  129. Mustafa, A.S., 1988, Identification of T-cell-activating recombinant antigens shared among three candidate antileprosy vaccines, killed M. leprae, M. bovis BCG, and Mycobacterium w, Int. J. Lepr. Other Mycobact. Dis. 56: 265–273.PubMedGoogle Scholar
  130. Nardelli-Haefliger, D., Kraehenbuhl, J.P., Curtiss, R., 3rd, Schodel, F., Potts, A., Kelly, S., and De Grandi, P., 1996, Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain, Infect. Immun. 64: 5219–5224.PubMedGoogle Scholar
  131. Nau, G.J., Guilfoile, P., Chupp, G.L., Berman, J.S., Kim, S.J., Kornfeld, H., and Young, R.A., 1997, A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis, Proc. Natl. Acad. Sci. USA 94: 6414–6419.PubMedCrossRefGoogle Scholar
  132. Noordeen, S.K., 1991, A look at world leprosy, Lep. Rev. 62: 72–86.Google Scholar
  133. O’Callaghan, D., Maskell, D., Tite, J., and Dougan, G., 1990, Immune responses in BALB/c mice following immunization with aromatic compound or purine-dependent Salmonella typhimurium strains, Immunology 69: 184–189.PubMedGoogle Scholar
  134. Orme, I.M., anderson, P., and Boom, W.H., 1993a, T cell response to Mycobacterium tuberculosis, J. Infect. Dis. 167: 1481–1497.PubMedCrossRefGoogle Scholar
  135. Orme, I.M., Roberts, A.D., Griffin, J.P., and Abrams, J.S., 1993b, Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection, J. Immunol. 151: 518–525.PubMedGoogle Scholar
  136. Patarroyo, M.E., Parra, C.A., Pinilla, C., del Portillo, P., Torres, M.L., Clavijo, P., Salazar, L.M., and Jimenez, C., 1986, Immunogenic synthetic peptides against mycobacteria of potential immunodiagnostic and immunoprophylactic value, Lepr. Rev. 57 Suppl 2: 163–168.Google Scholar
  137. Pavelka, M.S., Jr., and Jacobs, W.R., Jr., 1996, Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis, J. Bacteriol. 178: 6496–66507.PubMedGoogle Scholar
  138. Pelicic, V., Jackson, M., Reyrat, J.M., Jacobs, W.R., Jr., Gicquel, B., and Guilhot, C., 1997, Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA 94: 10955–10960.PubMedCrossRefGoogle Scholar
  139. Pelicic, V., Reyrat, J.M., and Gicquel, B., 1998, Genetic advances for studying Mycobacterium tuberculosis pathogenicity, Mol. Microbiol. 28: 413–420.Google Scholar
  140. Philipp, W.J., Nair, S., Guglielmi, G., Lagranderie, M., Gicquel, B., and Cole, S.T., 1996, Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis, Microbiol. 142: 3135–3145.CrossRefGoogle Scholar
  141. Plotkin, S.A., and Bouveret-Le Cam, N., 1995, A new typhoid vaccine composed of the Vi capsular polysaccharide, Arch. Intern. Med. 155: 2293–2299.PubMedCrossRefGoogle Scholar
  142. Plum, G., Brenden, M., Clark-Curtiss, J.E., and Pulverer, G., 1997, Cloning, sequencing, and expression of the mig gene of Mycobacterium avium, which codes for a secreted macrophage-induced protein, Infect. Immun. 65: 4548–4557.Google Scholar
  143. Plum, G., and Clark-Curtiss, J.E., 1994, Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages, Infect. Immun. 62: 476–483.Google Scholar
  144. Polyak, S., Chen, H., Hirsch, D., George, I., Hershberg, R., and Sperber, K., 1997, Impaired class II expression and antigen uptake in monocytic cells after HIV-1 infection, J. Immunol. 159: 2177–2188.PubMedGoogle Scholar
  145. Reitman, M., 1967, Infectivity and antigenicity of streptomycin-dependent Salmonella typhosa, J. Infect. Dis. 117: 101–107.PubMedCrossRefGoogle Scholar
  146. Rescigno, M., Citterio, S., Thery, C., Rittig, M., Medaglini, D., Pozzi, G., Amigorena, S., and Ricciardi-Castagnoli, P., 1998, Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells, Proc. Natl. Acad. Sci. USA 95: 5229–5234.PubMedCrossRefGoogle Scholar
  147. Reyrat, J.M., Lopez-Ramirez, G., Ofredo, C., Gicquel, B., and Winter, N., 1996, Urease activity does not contribute dramatically to persistence of Mycobacterium bovis bacillus Calmette-Guerin, Infect. Immun. 64: 3934–3936.Google Scholar
  148. Robbe-Saule, V., Coynault, C., and Norel, F., 1995, The live oral typhoid vaccine Ty21a is a rpoS mutant and is susceptible to various environmental stresses, FEMS Microbiol. Lett. 126: 171–1716.PubMedCrossRefGoogle Scholar
  149. Roberts, M., Li, J., Bacon, A., and Chatfield, S., 1998, Oral vaccination against tetanus: comparison of the immunogenicities of Salmonella strains expressing fragment C from the nirB and htrA promoters, Infect. Immun. 66: 3080–3087.Google Scholar
  150. Roche, P.W., Peake, P.W., Billman-Jacobe, H., Doran, T., and Britton, W.J., 1994, T-cell determinants and antibody binding sites on the major mycobacterial secretory protein MPB59 of Mycobacterium bovis, Infect. Immun. 62: 5319–5326.Google Scholar
  151. Rouse, D.A., DeVito, J.A., Li, Z., Byer, H., and Morris, S.L., 1996, Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance, Mol. Microbiol. 22: 583–592.PubMedCrossRefGoogle Scholar
  152. Russmann, H., Shams, H., Poblete, F., Fu, Y., Galan, J.E., and Donis, R.O., 1998, Delivery of epitopes by the salmonella type IH secretion system for vaccine development, Science 281: 565–568.PubMedCrossRefGoogle Scholar
  153. Schuller, S., Kugler, S., and Goebel, W, 1998, Suppression of major histocompatibility complex class I and class II gene expression in Listeria monocytogenes-infected murine macrophages, FEMS Immunol. Med. Microbiol. 20: 289–299.PubMedCrossRefGoogle Scholar
  154. Sherman, D.R., Mdluli, K., Hickey, M.J., Arain, T.M., Morris, S.L., Barry, C.E., 3rd, and Stover, C.K., 1996, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis, Science 272: 1641–1643.PubMedCrossRefGoogle Scholar
  155. Sieling, P.A., Chatterjee, D., Porcelli, S.A., Prigozy, T.I., Mazzaccaro, R.J., Soriano, T., Bloom, B.R., Brenner, M.B., Kronenberg, M., Brennan, P.J., and Modlin, R.L., 1995, CD1restricted T cell recognition of microbial lipoglycan antigens, Science 269: 227–230.PubMedCrossRefGoogle Scholar
  156. Siler, J.F., 1941, Immunization to typhoid fever,Johns Hopkins University Press.Google Scholar
  157. Sirard, J.C., Fayolle, C., de Chastellier, C., Mock, M., Leclerc, C., and Berche, P., 1997, Intra-cytoplasmic delivery of listeriolysin O by a vaccinal strain of Bacillus anthracis induces CD8-mediated protection against Listeria monocytogenes, J. Immunol. 159: 4435–4443.PubMedGoogle Scholar
  158. Slutsker, L., Altekruse, S.F., and Swerdlow, D.L., 1998, Foodborne diseases. Emerging pathogens and trends, Infect. Dis. Clin. North. Am. 12: 199–216.PubMedCrossRefGoogle Scholar
  159. Stanford, J.L., and Stanford, C.A., 1994, Immunotherapy of tuberculosis with Mycobacterium vaccae NCTC 11659, Immunobiology 191: 555–563.PubMedCrossRefGoogle Scholar
  160. Stenger, S., Mazzaccaro, R.J., Uyemura, K., Cho, S., Barnes, P.F., Rosat, J.P., Sette, A., Brenner, M.B., Porcelli, S.A., Bloom, B.R., and Modlin, R.L., 1997, Differential effects of cytolytic T cell subsets on intracellular infection, Science 276: 1684–1687.PubMedCrossRefGoogle Scholar
  161. Stocker, B.A., Hoiseth, S.K., and Smith, B.P., 1983, Aromatic-dependent “Salmonella sp.” as live vaccine in mice and calves, Dey. Biol. Stand: 53: 47–54.Google Scholar
  162. Stover, C.K., de la Cruz, V.F., Fuerst, T.R., Burlein, J.E., Benson, L.A., Bennet, L.T., Bansal, G.P., Young, J.F., Lee, M.H., Hatfull, G.F., Snapper, S.B., Barletta, R.G., Jacobs, W.R., Jr., and Bloom, B.R., 1991, New use of BCG for recombinant vaccines, Nature 351: 456–460.PubMedCrossRefGoogle Scholar
  163. Sturgill-Koszycki, S., Schlesinger, P.H., Chakraborty, P., Haddix, P.L., Collins, H.L., Fok, A.K., Allen, R.D., Gluck, S.L., Heuser, J., and Russell, D.G., 1994, Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science 263: 678–681.PubMedCrossRefGoogle Scholar
  164. Sugita, M., Moody, D.B., Jackman, R.M., Grant, E.P., Rosat, J.P., Behar, S.M., Peters, P.J., Porcelli, S.A., and Brenner, M.B., 1998, CD1-a new paradigm for antigen presentation and T cell activation, Clin. Immunol. Immunopathol. 87: 8–14.PubMedCrossRefGoogle Scholar
  165. Sztein, M.B., Tanner, M.K., Polotsky, Y., Orenstein, J.M., and Levine, M.M., 1995, Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans, J. Immunol. 155: 3987–3993.PubMedGoogle Scholar
  166. Tacket, C.O., Hone, D.M., Curtiss, R.d., Kelly, S.M., Losonsky, G., Guers, L., Harris, A.M., Edelman, R., and Levine, M.M., 1992a, Comparison of the safety and immunogenicity of delta aroC delta aroD and delta cya delta crp Salmonella typhi strains in adult volunteers, Infect. Immun. 60: 536–541.PubMedGoogle Scholar
  167. Tacket, C.O., Hone, D.M., Losonsky, G.A., Guers, L., Edelman, R., and Levine, M.M., 1992b, Clinical acceptability and immunogenicity of CVD 908 Salmonella typhi vaccine strain, Vaccine 10: 443–446.PubMedCrossRefGoogle Scholar
  168. Tacket, C.O., Kelly, S.M., Schodel, F., Losonsky, G., Nataro, J.P., Edelman, R., Levine, M.M., and Curtiss, R., 3rd, 1997, Safety and immunogenicity in humans of an attenuated Salmonella typhi vaccine vector strain expressing plasmid-encoded hepatitis B antigens stabilized by the Asd-balanced lethal vector system [published erratum appears in Infect Immun 1997 Sep;65(9):3981], Infect. Immun. 65: 3381–3385.PubMedGoogle Scholar
  169. Tapa, S., and Cvjetanovic, B., 1975, Controlled field trial on the effectiveness of one and two doses of acetone-inactivated and dried typhoid vaccine, Bull. World Health Organ. 52: 75–80.PubMedGoogle Scholar
  170. Tascon, R.E., Stavropoulos, E., Lukacs, K.V., and Colston, M.J., 1998, Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon, Infect. Immun. 66: 830–834.PubMedGoogle Scholar
  171. Tite, J.P., Gao, X.M., Hughes-Jenkins, C.M., Lipscombe, M., O’Callaghan, D., Dougan, G., and Liew, F.Y., 1990, Anti-viral immunity induced by recombinant nucleoprotein of influenza A virus. III. Delivery of recombinant nucleoprotein to the immune system using attenuated Salmonella typhimurium as a live carrier, Immunology 70: 540–546.PubMedGoogle Scholar
  172. Tsukada, H., Kawamura, L, Arakawa, M., Nomoto, K., and Mitsuyama, M., 1991, Dissociated development of T cells mediating delayed-type hypersensitivity and protective T cells against Listeria monocytogenes and their functional difference in lymphokine production, Infect Immun 59: 3589–3595.PubMedGoogle Scholar
  173. Ulmer, J.B., 1996, DNA vaccines, Curr. Opin. Immunol. 8: 531–536.PubMedCrossRefGoogle Scholar
  174. VanHeyningen, T.K., Collins, H.L., and Russell, D.G., 1997, IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses, J. Immunol. 158: 330–337.PubMedGoogle Scholar
  175. Verjans, G.M., Janssen, R., UytdeHaag, F.G., van Doomik, C.E., and Tommassen, J.,1995, Intracellular processing and presentation of T cell epitopes, expressed by recombinant Escherichia coli and Salmonella typhimurium, to human T cells, Eur. J. Immunol. 25: 405–410.Google Scholar
  176. Verma, N.K., Ziegler, H.K., Wilson, M., Khan, M., Safley, S., Stocker, B.A., and Schoolnik, G.K., 1995, Delivery of class I and class II MHC-restricted T-cell epitopes of listeriolysin of Listeria monocytogenes by attenuated Salmonella, Vaccine 13: 142–150.PubMedCrossRefGoogle Scholar
  177. Via, L.E., Fratti, R.A., McFalone, M., Pagan-Ramos, E., Deretic, D., and Deretic, V., 1998, Effects of cytokines on mycobacterial phagosome maturation, J. Cell Sci. 111: 897–905.PubMedGoogle Scholar
  178. Villarreal-Ramos, B., Manser, J., Collins, R.A., Dougan, G., Chatfield, S.N., and Howard, C.J., 1998, Immune responses in calves immunised orally or subcutaneously with a live Sal-monella typhimurium aro vaccine, Vaccine 16: 45–54.Google Scholar
  179. von Reyn, C.F., Arbeit, R.D., Yeaman, G., Waddell, R.D., Marsh, B.J., Morin, P., Modlin, J.F., and Remold, H.G., 1997, Immunization of healthy adult subjects in the United States with inactivated Mycobacterium vaccae administered in a three-dose series, Clin. Infect. Dis. 24: 843–848.CrossRefGoogle Scholar
  180. Vordemeier, H.M., Harris, D.P., Roman, E., Lathigra, R., Moreno, C., and Ivanyi, J., 1991, Identification of T cell stimulatory peptides from the 38 kDa protein of Mycobacterium tuberculosis, J. Immunol. 147: 1023–1029.Google Scholar
  181. Walsh, G.P., Tan, E.V., dela Cruz, E.C., Abalos, R.M., Villahermosa, L.G., Young, L.J., Cellona, R.V., Nazareno, J.B., and Horwitz, M.A., 1996, The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease, Nat. Med. 2: 430–436.PubMedCrossRefGoogle Scholar
  182. Weiskirch, L.M., and Paterson, Y., 1997, Listeria monocytogenes: a potent vaccine vector for neoplastic and infectious disease, Immunol. Rev. 158: 159–169.Google Scholar
  183. White, D.W., Wilson, R.L., and Harty, J.T., 1996, CD8+ T cells in intracellular bacterial infections of mice, Res. Immunol. 147: 519–524.PubMedCrossRefGoogle Scholar
  184. Wilson, T.M., de Lisle, G.W., and Collins, D.M., 1995, Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis, Mol. Microbiol. 15: 1009–1015.CrossRefGoogle Scholar
  185. York, I.A., Roop, C., andrews, D.W., Riddell, S.R., Graham, F.L., and Johnson, D.C., 1994, A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes, Cell 77: 525–535.PubMedCrossRefGoogle Scholar
  186. Young, D.B., and Garbe, T.R., 1991, Lipoprotein antigens of Mycobacterium tuberculosis, Res. MicrobioL 142: 55–65.CrossRefGoogle Scholar
  187. Zhang, X., Kelly, S.M., Bollen, W.S., and Curtiss, R., 3rd, 1997, Characterization and immunogenicity of Salmonella typhimurium SL1344 and UK-1 delta crp and delta cdt deletion mutants, Infect. Immun. 65: 5381–5387.PubMedGoogle Scholar
  188. Zhang, Y., Heym, B., Allen, B., Young, D., and Cole, S., 1992, The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis, Nature 358: 591–593.Google Scholar
  189. Zhu, Y.D., Fennelly, G., Miller, C., Tarara, R., Saxe, I., Bloom, B., and McChesney, M., 1997, Recombinant bacille Calmette-Guerin expressing the measles virus nucleoprotein protects infant rhesus macaques from measles virus pneumonia, J. Infect. Dis. 176: 1445–1453.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Raúl G. Barletta
    • 1
    • 2
  • Ruben O. Donis
    • 1
  • Ofelia Chacón
    • 1
    • 3
  • Homayoun Shams
    • 1
  • Jeffrey D. Cirillo
    • 1
  1. 1.Department of Veterinary and Biomedical SciencesUniversity of NebraskaLincolnUSA
  2. 2.Center of BiotechnologyUniversity of NebraskaLincolnUSA
  3. 3.Department of Veterinary PathobiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations