The Enthalpy of Fusion of Low Molecular Weight Polyethylene Fractions Crystallized from Dilute Solution

  • S. Go
  • F. Kloos
  • L. Mandelkern

Abstract

The thicknesses of linear polyethylene crystals formed in dilute solution depend only on the isothermal crystallization temperature and are independent of chain length for molecular weights greater than about 20,000.(1)(2)(3)(4) Thermodynamic properties, such as the density and enthalpy of fusion, are also independent of chain length in this range.(1)(4)(5) These quantities are only dependent on the crystallite thickness which is determined by the crystallization temperature and solvent. In an apparent exception to this generalization, it has been reported that both the density and enthalpy of fusion depend markedly on molecular weight.(6)(7) However, subsequent reports have indicated that these experiments were in error due to sample contamination with celite and grease.(8)

Keywords

Crystallization Temperature Molecular Weight Range High Molecular Weight Fraction Isothermal Crystallization Temperature Molecular Weight Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. Mandelkern, A. L. Allou, Jr. and M. Gopalan, J. Phys. Chem. 72, 309 (1968).CrossRefGoogle Scholar
  2. (2).
    J. F. Jackson and L. Mandelkern, Macromolecules 1, 546 (1968).CrossRefGoogle Scholar
  3. (3).
    E. Ergöz and L. Mandelkern, J. Polymer Sci. 10B, 631 (1972).CrossRefGoogle Scholar
  4. (4).
    H. E. Bair and R. Salovey, J. Macrom. Sci.-Phys. B3, 3 (1969).CrossRefGoogle Scholar
  5. (5).
    R. K. Sharma and L. Mandelkern, Macromolecules 3, 758 (1970).CrossRefGoogle Scholar
  6. (6).
    F. Hamada, B. Wunderlich, T. Sumida, S. Hayaski, and A. Nakajima, J. Phy. Chem. 72, 178 (1968).CrossRefGoogle Scholar
  7. (7).
    B. Wunderlich, Macromolecular Physics, p. 405. Academic Press, 1973.Google Scholar
  8. (8).
    A. Nakajima and F. Hameda, J. Pure and Appl. Chem. 31, 1 (1972).CrossRefGoogle Scholar
  9. (9).
    F. Kloos, S. Go and L. Mandelkern, to be published.Google Scholar
  10. (10).
    D. M. Sadler, J. Polymer Sci. A-2 9, 779 (1971).CrossRefGoogle Scholar
  11. (11).
    D. M. Sadler and A. Keller, KolloicT-Z-Z Polymer 239, 641 (1970).CrossRefGoogle Scholar
  12. (12).
    We wish to thank Dr. G. W. Knight, Dow Chemical Company for graciously performing these analyses for us.Google Scholar
  13. (13).
    J. F. Jackson and L. Mandelkern in Analytical Calorimetry, R. S. Porter and J. F. Johnsen, eds., p. 2. Plenum Publishing Company, New York, 1968.Google Scholar
  14. (14).
    T. G. Fox and S. Loshaek, J. Poly. Sci. 15, 371 (1955).CrossRefGoogle Scholar
  15. (15).
    E. W. Fischer and G. Hinrichsen, Kolloid-Z-Z Polymer 213, 93 (1966).CrossRefGoogle Scholar
  16. (16).
    F. Kloos, S. Go and L. Mandelkern, J. Polymer Sci., Polymer Physics, 00 000 (1974).Google Scholar
  17. (17).
    P. J. Flory and A. Vrij, J. Amer. Chem. Soc. 85, 3548 (1963).CrossRefGoogle Scholar
  18. (18).
    D. E. Witenhafer and J. L. Koenig, J. Polymer Sci. A-2 7, 1279 (1969).CrossRefGoogle Scholar
  19. (19).
    A. Keller and D. J. Priest, J. Macrom. Sci. 2B, 479 (1968).CrossRefGoogle Scholar
  20. (20).
    L. Mandelkern, J. Phys. Chem. 75, 3909 (1971).CrossRefGoogle Scholar
  21. (21).
    L. Mandelkern, Progress in Polymer Science, ed. A. D. Jenkins 2, 165 (1970), Pergamon Press.Google Scholar
  22. (22).
    D. M. Sadler and A. Keller, Kolloid-Z-Z Polymer 242, 1081 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • S. Go
    • 1
  • F. Kloos
    • 1
  • L. Mandelkern
    • 1
  1. 1.Department of Chemistry and Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations