Atmospheric Chemistry

  • Paolo Zannetti

Abstract

Early air pollution studies dealt with the challenging problem of correctly simulating atmospheric diffusion and, in particular, the maximum ground-level impact of elevated emissions of primary pollutants, such as SO 2. Two major factors, however, focused attention on atmospheric chemistry: 1) photochemical smog, a new, different smog associated with high-temperature “summertime” conditions, and first recognized in the Los Angeles basin in the 1940s; and 2) long-range transport phenomena, clearly identified in the 1970s, that led to the study of multiday transport scenarios of industrial and urban plumes and, consequently, to the simulation of the formation, inside them, of secondary gases and particles.

Keywords

Atmospheric Chemistry Aerosol Model Secondary Aerosol Photochemical Smog Photochemical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, J., T.C. Myers, L.E. Reid, D.C. Whitney, S.H. Golding, S.R. Hayes, and S.D. Reynolds (1985a): SAI Airshed Model Operations Manual. Vol. I: User’s Manual. U.S. EPA Publication EPA–600/8–85–007a. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. (NTIS No. PB 85–191567 )Google Scholar
  2. Ames, J., S.R. Hayes, T.C. Myers, and D.C. Whitney (1985b): SAI Airshed Model Operations Manuals. Vol. II: Systems Manual. EPA Publication EPA–600/8–85–007b. U.S. Environmental Agency, Research Triangle Park, North Carolina.Google Scholar
  3. Applied Modeling, Inc. (1985): User’s guide to the photochemical trajectory model trace. API, Woodland Hills, California.Google Scholar
  4. Atkinson, R., and A.C. Lloyd (1984): Evaluation of kinetic and mechanism data for modeling of photochemical smog. J. Phys. Chem. Ref. Data, 13: 315–444.CrossRefGoogle Scholar
  5. Baulch, D.L., R.A. Cox, P.J. Crutzen, R.F. Hampson, Jr., F.A. Kerr, J. Troe, and R.P. Watson (1982): Evaluated kinetic and photochemical data for atmospheric chemistry, Supplement 1. CODATA Task Group on Chemical Kinetics, J. Phys. Chem. Ref. Data, 11: 327–496.CrossRefGoogle Scholar
  6. Carmichael, G.R., L.K. Peters, and T. Kitada (1986): A second generation model for regional-scale transport/chemistry/deposition. Atmos. Environ., 20: 173–188.CrossRefGoogle Scholar
  7. Carter, W.P. (1988): Documentation of a gas phase photochemical mechanism for use in airshed modeling, Appendix B. Contract No. A5–122–32. University of California, Statewide Air Pollution Research Center, Riverside, California.Google Scholar
  8. Dodge, M.C. (1977): Combined use of modeling techniques and smog chamber data to derive ozone–precursor relationships. Proceedings, International Conference on Photochemical Oxidant Pollution and Its Control, Vol. II, edited by B. Dimitriades, U.S. Environmental Protection Agency Document EPA–600/3–77–001b, pp. 881–889.Google Scholar
  9. Finlayson-Pitts, B.J., and J.N. Pitts, Jr. (1986): Atmospheric Chemistry: Fundamental and Experimental Techniques. New York: John Wiley.Google Scholar
  10. Gelbard, F., and J.H. Seinfeld (1979): The general dynamic equation for aerosols—theory and application to aerosol formation and growth. J. Colloid Interface Sci., 69: 363–382.CrossRefGoogle Scholar
  11. Gery, M.W., G.Z. Whitten, and J.P. Killus (1987): Development and testing of the CBM–IV for urban and regional testing. U.S. EPA Contract 68–02–4136. Systems Applications, Inc., San Rafael, California.Google Scholar
  12. Gipson, G.L. (1984): User’s manual for OZIPM–2: Ozone isopleth plotting with optional mechanisms/Version 2. U.S. Environmental Protection Agency Document EPA–450/4–84–024, Office of Air Quality Planning and Standards, Monitoring and Data Analysis Division, Research Triangle Park, North Carolina.Google Scholar
  13. Kerr, J.A., and J.G. Calvert (1984): Chemical transformations modules for Eulerian acid deposition models, I. The gas-phase chemistry. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.Google Scholar
  14. Leone, J.A., and J.H. Seinfeld (1984): Updated chemical mechanism for atmospheric photooxidation of toulene. Int. J. Chem. Kinetics, 16: 159.CrossRefGoogle Scholar
  15. Lurmann, F.W., D.A. Godden, and H.M. Collins (1985): User’s guide to the PLMSTAR air quality simulation model. Environmental Research and Technology Document M-2206–100, Newbury Park, California.Google Scholar
  16. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982a): Mathematical modeling of photochemical air pollution. Final Report to the California Air Resources Board, Contracts A5–046–87 and A7–187–30.Google Scholar
  17. McRae, G.J., W.R. Goodin, and J.H. Seinfeld (1982b): Development of a second—generation mathematical model for urban air pollution; I. Model formulation. Atmos. Environ., 16: 679.CrossRefGoogle Scholar
  18. McRae, G.J., and J.H. Seinfeld (1983): Development of a second generation mathematical model for urban air pollution; II. Evaluation of model problems. Atmos. Environ., 17: 501.CrossRefGoogle Scholar
  19. Pilinis, C., J.H. Seinfeld, and C. Seigneur (1987): Mathematical modeling of the dynamics of multicomponent atmospheric aerosols. Atmos. Environ., 21: 943–955.CrossRefGoogle Scholar
  20. Pilinis, C., and J.H. Seinfeld (1988): Development and evaluation of an Eulerian photochemical gas—aerosol model. Atmos. Environ., 22: 1985–2001.CrossRefGoogle Scholar
  21. Seigneur, C., T.W. Tesche, P.M. Roth, M.—K. Liu (1983): On the treatment of point source emissions in urban air quality modeling. Atmos. Environ., 17 (9): 1655–1676.CrossRefGoogle Scholar
  22. Seigneur, C., A.B. Hudischewskyj, J.H. Seinfeld, K.T. Whitby, E.R. Whitby, J.R. Brock, and H.M. Barnes (1986): Simulation of aerosol dynamics: A comparative review of mathematical models. Aerosol Sci. and Tech., 5: 205–222.CrossRefGoogle Scholar
  23. Seigneur, C. (1987): Computer simulation of air pollution chemistry. Environ. Software, 2: 116.CrossRefGoogle Scholar
  24. Seinfeld, J.H. (1986): Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley.Google Scholar
  25. Systems Applications, Inc. (1984): Visibility and other air quality benefits of sulfur dioxide emission controls in the eastern United States: Volume I. Systems Applications draft report SYSAPP-84/165, San Rafael, California.Google Scholar
  26. Tesche, T.W., C. Seigneur, W.R. Oliver, and J.L. Haney (1984): Modeling ozone control strategies in Los Angeles. J. Environ. Eng., 110: 208–225.CrossRefGoogle Scholar
  27. Tesche, T.W., and D.E. McNalley (1989): A three—dimensional photochemical—aerosol model for episodic and long—term simulation: Formulation and initial application in the Los Angeles Basin. Presented at the annual meeting of the American Chemical Society, Miami Beach, Florida, September.Google Scholar
  28. Warren, D.R., and J.H. Seinfeld (1985): Simulation of aerosol size—distribution evolution in systems with simultaneous nucleation, condensation and coagulation. Aerosol Sci. and Technol., 4: 31–43.CrossRefGoogle Scholar
  29. Whitten, G.Z., and H. Hogo (1977): Mathematical modeling of simulated photochemical smog. U.S. Environment Agency Report EPA–600/3–77–011. Research Triangle Park, North Carolina.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paolo Zannetti
    • 1
    • 2
  1. 1.AeroVironment Inc.MonroviaUSA
  2. 2.Bergen High Tech CentreIBM Scientific CentreBergenNorway

Personalised recommendations