Circadian Rhythms in the Central Cholinergic System in Aging Animals

  • Chandra Mohan
  • E. Radha
Part of the Advances in experimental medicine and biology book series (AEMB, volume 108)

Abstract

A number of changes in cyclically varying parameters during aging have been reported. These have included phase shifts in the diurnal distribution of spontaneous locomotor activity of rats (Mohan, 1975), mitotic index in the rat ear epithelium (Bullough, 1949), body temperature (Yunnis et al., 1974), urinary excretion of catecholamines (Descovich et al., 1974), eosinophil count (Halberg et al., 1955) and several other physiological parameters (Scheving et al., 1974).

Keywords

Circadian Rhythm Superior Colliculus Activity Rhythm Acetylcholinesterase Activity Hardenian Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albretch, P., Visscher, M.B., Bittner, J.J. and Halberg, F. Daily changes in 5-hydroxytryptamine in mouse brain. Proc. Soc. Exp. Med. 92: 703–706, 1956.Google Scholar
  2. Ansell, G.B. and Spanner, S. Studies on the origin of choline in the brain of the rat. Biochem. J. 122: 741–750, 1971.PubMedGoogle Scholar
  3. Ansell, G.B. and Spanner, S. The origin and metabolism of brain choline. In: Cholinergic Mechanisms, P.G. Waser, ed. Raven Press, New York, pp 117–129, 1975.Google Scholar
  4. Artom, C. Nitrogenous constituents of phospholipids. In: Methods in Enzymology, Vol. 3, S.P. Colowick and N.O. Kaplan, eds. Academic Press, New York, pp 358–367, 1957.CrossRefGoogle Scholar
  5. Bullough, W.S. Age and mitotic activity in the male mouse, Mus musculus L. J. Exp. Biol. 26: 261–286, 1949.PubMedGoogle Scholar
  6. Cohen, E.L. and Wurtman, R.J. Brain acetylcholine: increase after systemic choline administration. Life Sciences 16: 1095–1102, 1975.PubMedCrossRefGoogle Scholar
  7. Descovich, G.C., Montalbetti, N., Kuhl, J.F.W., Rimondi, S., Halberg, F. and Ceredi, C. Age and catecholamine rhythms. Chronobiologia 1: 163–171, 1974.PubMedGoogle Scholar
  8. Fernstrom, J.D. and Wurtman, R.J. Nutrition and the brain. Sci. Amer. 230: 84–91, 1974.PubMedCrossRefGoogle Scholar
  9. Friedman, A.H. and Walker, C.A. Circadian rhythms in rat midbrain and caudate nucleus biogenic amine levels. J. Physiol.(London) 197: 77–85, 1968.PubMedGoogle Scholar
  10. Friedman, A.H. and Walker, C.A. Circadian rhythms in central acetylcholine and the toxicity of cholinergic drugs. Fed. Proc. 28: 251, 1969.Google Scholar
  11. Frolkis, V.V. Regulation, Adaptation and Aging. Mauka, Leningrad, 1970.Google Scholar
  12. Frolkis, V.V., Bezrukov, V.V., Duplenko, Y.K., Shchegoleva, I.V., Shevtchuk, V.G. and Verkhratsky, N.S. Acetylcholine metabolism and cholinergic regulation of functions in aging. Gerontologia 19: 45–57, 1973.PubMedCrossRefGoogle Scholar
  13. Haga, T. and Noda, N. Choline uptake systems of rat brain synaptosomes. Biochem. Biophys. Acta. 291: 564–575, 1973.PubMedCrossRefGoogle Scholar
  14. Halberg, F., Bittner, J.J., Gully, R.J., Albretch, P.G. and Brackney, E.L. 24-hour periodicity and audiogenic convulsions in mice of various ages. Proc. Soc. Exp. Biol. Med. 88: 169–173, 1955.PubMedGoogle Scholar
  15. Halberg, F., Tong, Y.L. and Johnson, E.A. Circadian system phase—an aspect of temporal morphology: Procedures and illustrative examples. In: Cellular Aspects of Biorhythms, H. v. Mayersbach, ed. Springer-Verlag, New York, p 20, 1967.CrossRefGoogle Scholar
  16. Halberg, F., Johnson, E.A., Nelson, W., Runge, W. and Sothern, R. Autorhythmometry — Procedures for physiological self-measurements and their analysis. Physiology Teacher 1: 1–11, 1972.Google Scholar
  17. Hanin, I., Massarelli, R. and Costa, E. Acetylcholine concentrations in rat brain: Diurnal oscillations. Science 170: 341–342, 1970.PubMedCrossRefGoogle Scholar
  18. Hestrin, S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical applications. J. Biol. Chem. 180: 249, 1949.PubMedGoogle Scholar
  19. Hollander, J. and Barrows, C.H. Enzymatic studies in senescent rodent brains. J. Gerontology 25: 174–179, 1968.CrossRefGoogle Scholar
  20. Illnerova, H. Effect of environmental lighting on serotonin rhythm in rat pineal gland during postnatal development. Life Sciences 10: 583–590, 1971.CrossRefGoogle Scholar
  21. Layne, E. Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in Enzymology, Vol. 3., S.P. Colowick and N.O. Kaplan, eds. Academic Press, New York, p 454, 1957.Google Scholar
  22. Massarelli, R., Hanin, I. and Costa, E. Diurnal rhythm of choline and acetylcholine in rat brain. Fed. Proc. 29: 417, 1970.Google Scholar
  23. Mayersbach, H. v. Seasonal influences on biological rhythms of standardized laboratory animals. In: Cellular Aspects of Biorhythms, H. v. Mayersbach, ed. Springer-Verlag, New York, p 87, 1967.CrossRefGoogle Scholar
  24. Mohan, C. Behavioural responses of aging rats to cholinergic and adrenergic drugs. Proc. V. Annual. Conf. Ethol. Soc. India, pp 22-23, 1975.Google Scholar
  25. Mohan, C. Effect of aging on some parameters of the central nervous system function and biochemistry. Ph.D. Thesis, Bangalore University, 1976.Google Scholar
  26. Mohan, C. and Radha, E. Circadian rhythms in acetylcholinesterase activity during aging of the central nervous system. Life Sciences 15: 231–237, 1974.PubMedCrossRefGoogle Scholar
  27. Morgan, W.W., Yndo, C.A. and McFadin, L.S. Daily rhythmic changes in the content of serotonin and 5-hydroxyindolacetic acid in the cerebral cortex of mice. Life Sciences 14: 329–338, 1974.PubMedCrossRefGoogle Scholar
  28. Moudgil, V.K. and Kanungo, M.S. Effect of age on the circadian rhythm of acetylcholinesterase of the brain of rat. Comp. Gen. Pharmacol. 4: 127–130, 1973.PubMedCrossRefGoogle Scholar
  29. Nachmansohn, D. and Wilson, I.B. Choline acetylase. In: Methods in Enzymology, Vol. 1, S.P. Colowick and N.O. Kaplan, eds. Academic Press, New York, pp 619–624, 1955.CrossRefGoogle Scholar
  30. Nikitin, V.N. and Martynenko, A.A. CoA content in tissues of white rats of different ages. In: Mekhanismy Stareniya. Kiev, pp 66-68, 1963.Google Scholar
  31. Quay, W.B. Regional and circadian differences in cerebral cortical serotonin concentration. Life Sciences 4: 379, 1965.PubMedCrossRefGoogle Scholar
  32. Quay, W.B. Differences in circadian rhythms in 5-hydroxytryptamine according to brain region. Am. J. Physiol. 215: 1448–1453, 1968.PubMedGoogle Scholar
  33. Reis, D.J., Wurtman, R.J., Weinbreb, M. and Corvelli, A. A circadian rhythm of norepinephrine regionally in cat brain; its relationship to environmental lighting and to regional diurnal variations in brain serotonin. J. Pharmacol. 164: 135–145, 1968.Google Scholar
  34. Saito, Y. The circadian rhythm of brain acetylcholine levels and motor activity in the rat. Life Sciences 10: 735–744, 1971.CrossRefGoogle Scholar
  35. Saito, Y., Yamashita, L., Yamazaki, K., Okada, F., Satomi, R. and Fujieda, T. Circadian fluctuations of brain acetylcholine in rats. I. On the variations in total brain and discrete areas. Life Sciences 16: 281–288, 1975.PubMedCrossRefGoogle Scholar
  36. Scheving, L.E., Harrison, W.H., Gordon, P. and Pauly, J.E. Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain. Am. J. Physiol. 214: 166–173, 1968.PubMedGoogle Scholar
  37. Scheving, L.E., Roig, C., Halberg, F., Pauly, J.E. and Hand, E.A. Circadian variations in residents of a “senior citizens” home. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 353–357, 1974.Google Scholar
  38. Schiebeier, H. and Mayersbach, H. v. Circadian variations of acetylcholinesterase in rat brain. Int. J. Chronobiol. 2: 281–289, 1974.Google Scholar
  39. Sorimachi, M. and Kataoka, K. Developmental changes of choline acetyl transferase and acetylcholinesterase in the ciliary and superior cervical ganglion of the chick. Brain Res. 70: 123–130, 1974.PubMedCrossRefGoogle Scholar
  40. Watterberg, L., Geller, E. and Yuwiler, A. Hardenian gland. An extraretinal photoreceptor influencing the pineal gland in neonatal rat. Science 167: 884–885, 1970.CrossRefGoogle Scholar
  41. Wurtman, R.J. and Axelrod, J. A 24-hour rhythm in the content of norepinephrine of the pineal and salivary glands of the rat. Life Sciences 5: 665–669, 1969.CrossRefGoogle Scholar
  42. Wurtman, R.J., Larin, F., Mostafapour, S. and Fernstrom, J.D. Brain catechol synthesis: Control by brain tyrosine concentration. Science: 185: 183–184, 1974.PubMedCrossRefGoogle Scholar
  43. Yamamura, H.I. and Snyder, S.H. High-affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21: 1355–1374, 1973.PubMedCrossRefGoogle Scholar
  44. Yunis, E.J., Fernandes, G., Nelson, W. and Halberg, F. Circadian temperature rhythms and aging in rodents. In: Chronobiology, L.E. Scheving, F. Halberg and J.E. Pauly, eds. Igaku Shoin Ltd., Tokyo, pp 358–363, 1974.Google Scholar
  45. Zweig, M., Snyder, S.H. and Axelrod, J. Evidence for a nonretinal pathway to the pineal gland of newborn rats. Proc. Natl. Acad. Sci. 56: 515–520, 1966.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Chandra Mohan
    • 1
  • E. Radha
    • 2
  1. 1.Department of PharmacologyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of ZoologyBangalore UniversityBangaloreIndia

Personalised recommendations