Model Calculations of Nonradiative Multiphonon Processes in Inorganic Insulating Solids

  • C. J. Donnelly
  • G. F. Imbusch
Part of the NATO ASI Series book series (NSSB, volume 249)

Abstract

We examine the predictions of models employed to describe nonradiative multiphonon decay processes between electronic states of optically-active centres in inorganic insulating solids. We initially consider the single configurational coordinate model in the linear harmonic approximation, next the case of anharmonic vibrational potentials is taken into account, and finally we consider the case of different force constants in the electron-lattice coupling for the two electronic states. Numerical values are compared for the different cases.

Keywords

Nonradiative Transition Harmonic Model Nonradiative Process Activation Formula Anharmonic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.H. Fonger and C.W. Struck, J. Chem. Phys. 60, 1994 (1974).Google Scholar
  2. 2.
    F. Auzel in :Luminescence of Inorganic Solids (Ed. B. di Bartolo) Plenum Press, New York, 1978; B. Di Bartolo and R.C. Powell, Phonons and Resonances in Solids Wiley, New York, 1976.Google Scholar
  3. 3.
    T.H. Keil, Phys. Rev. A140 601 (1965).Google Scholar
  4. 4.
    C.W. Struck and W.H. Fonger, J. Chem. Phys. 60, 1988 (1974).Google Scholar
  5. 5.
    E. Gutsche, J. Lumin 24/25,689 (1981); Phys. Stat. Sol. (b) 109 583 (1982).Google Scholar
  6. 6.
    K. Peukar, R. Enderlein, A. Schenk, and E. Gutsche, Phys. Stat. Sol. (b) 109 599 (1982).Google Scholar
  7. 7.
    K. Huang, Sci. Sin. 24, 27 (1981).Google Scholar
  8. 8.
    G. Helmis, Ann. Phys. (Leipzig) 19, 41 (1956).ADSGoogle Scholar
  9. 9.
    R. Passier, Czech. J. Phys. B24 322 (1974).Google Scholar
  10. 10.
    J.F. Donegan, F.J. Bergin, T.J. Glynn, G.F. Imbusch, and J.P. Remeika, J. Lumin. 35, 57 (1986).Google Scholar
  11. 11.
    J.F. Donegan, T.J. Glynn, and G.F. Imbusch, J. Lumin. 36, 93 (1986).CrossRefGoogle Scholar
  12. 12.
    G.F. Imbusch and R. Kopelman in: Laser Spectroscopy of Solids (Eds. W.M. Yen and P.M. Selzer). Springer-Verlag, Berlin, 1981.Google Scholar
  13. 13.
    M.D. Sturge, Phys. Rev. B8, 6 (1973).ADSGoogle Scholar
  14. 14.
    N.F. Mott, Proc. Roy. Soc. (London) A167 384 (1938).Google Scholar
  15. 15.
    C.C. Klick and J.H. Schulman, in :Advances in Solid State Physics (Eds. F. Seitz and D. Turnbull), Academic Press, New York, 5, 97 (1957).Google Scholar
  16. 16.
    C.W. Struck and W.H. Fonger, J. Lumin. 10, 1 (1975).CrossRefGoogle Scholar
  17. 17.
    R. Englman and J. Jortner, Mol. Phys. 18, 145 (1970).ADSCrossRefGoogle Scholar
  18. 18.
    A. Kiel in: Third Intern. Conf.on Quantum Electronics Paris, 1963 (Eds. P. Grivet and N. Bloembergen), Columbia University Press, New York, 765 (1964).Google Scholar
  19. 19.
    H.W. Moos, J. Lumin. 1 /2, 106 (1968).Google Scholar
  20. 20.
    W.H. Fonger and C.W. Struck, J. Lumin. 17, 24 (1978).CrossRefGoogle Scholar
  21. 21.
    J.S. Bokman, Amer. J. Phys. 40, 1511 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    R.H. Bartram, J.C. Charpie, L.J. Andrews, and A. Lempicki, Phys. Rev. B34 2741 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. J. Donnelly
    • 1
  • G. F. Imbusch
    • 1
  1. 1.Department of PhysicsUniversity CollegeGalwayIreland

Personalised recommendations