Correlation among Water Content, Left Ventricular Function, Coronary Blood Flow, and Myocardial Metabolism after Hypothermic Ischemic Cardiac Arrest

  • J. Amano
  • M. Sunamori
  • T. Kameda
  • T. Okamura
  • A. Suzuki

Abstract

Subendocardial ischemia is a common cause of death following ischemic cardiac arrest. We studied relationships among myocardial water content (WC), left ventricular function, coronary blood flow, and myocardial metabolism following ischemic cardiac arrest. Under cardiopulmonary bypass with hypothermia, 120 min of aortic occlusion was employed, and myocardial temperature was kept around 20°C in 10 mongrel dogs. Left ventricular function (peak LVP, max dp/dt, LVEDP, LVSWI), coronary blood flow, myocardial enzymes (m-GOT, total CPK, MB-CPK), myocardial ATP and creatine phosphate (CP), and WC of the suben-docardium of the left ventricle were measured. Data were obtained in the control state and immediately and 30 and 60 min after aortic unclamping. Significant negative correlations were obtained between WC and max dp/dt (r = -0.8384), coronary blood flow (r = -0.9928), ATP (r = -0.7038), and CP (r = -0.7835). Significant positive correlations were obtained between WC and LVEDP (r = 0.7525), m-GOT (r = 0.7638), and total CPK (r = 0.7079). These data suggest that myocardial edema results in depression of left ventricular function and metabolism.

Keywords

Coronary Blood Flow Creatine Phosphate Myocardial Edema Subendocardial Ischemia Ventricular Stroke Work Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, W. B., Blackstone, E. H., and Kouchoukos, N. T. 1974. Effects of cardiopulmonary bypass and ischemic cardioplegia on the diastolic pressure-volume relationship and water content of the canine left ventricle. Circulation 49/50(Suppl.):III–19.Google Scholar
  2. 2.
    Buckberg, G. D., Fixier, D. E., Archie, J. P., and Hoffman, J. I. E. 1972. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ. Res. 30:67–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Buckberg, G. D., Towers, B., Foglia, D. E., Mulder, D. G., and Maloney, J. V. 1972. Subendocardial ischemia after cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 64:669–684.PubMedGoogle Scholar
  4. 4.
    De Gasperis, C, Gonzales-Lavin, L., Pellegrini, A., and Ross, D. N. 1971/72. Ultrastruc-tural aspects of human myocardial capillaries during open heart surgery. Cardiology 56:333–336.Google Scholar
  5. 5.
    Foglia, R. P., Steed, D. L., Follette, D. M., DeLana, E., and Buckberg, G. D. 1979. Iatrogenic myocardial edema with potassium cardioplegia. J. Thorac. Cardiovasc. Surg. 78:217–222.PubMedGoogle Scholar
  6. 6.
    Laks, H., Standeven, J., Blair, D., Hahn, J., Jellinek, M., and Willman, V. L. 1977. The effects of cardiopulmonary bypass with crystalloid and colloid hemodilution on myocardial extravascular water. J. Thorac. Cardiovasc. Surg. 73:129–138.PubMedGoogle Scholar
  7. 7.
    Leaf, A. 1973. Cell swelling: A factor in ischemic tissue injury. Circulation 48:455–458.PubMedCrossRefGoogle Scholar
  8. 8.
    Mukherjee, A., Buja, L. M., Scales, G. C, Fink, G. C., Templeton, G. H., Platt, M. R., and Willerson, J. T. 1978. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. In: T. Kobayashi, Y. Ito, and G. Rona (eds.), Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 12: Cardiac Adaptation, pp. 245–252. University Park Press, Baltimore.Google Scholar
  9. 9.
    Salisbury, P. F., Cross, C. E., and Rieben, P. A. 1960. Distensibility and water content of heart muscle before and after injury. Circ. Res. 8:788–793.PubMedCrossRefGoogle Scholar
  10. 10.
    Sunamori, M., Hatano, R., Suzuki, T., Yamamoto, N., Yamada, T., Kumazawa, T., and Sunaga, T. 1977. No-reflow phenomenon in the myocardium after the cardiopulmonary bypass: A genesis of the subendocardial ischemia. Jpn. J. Circ. 41:1–10.CrossRefGoogle Scholar
  11. 11.
    Utley, J. R., Michalsky, G. B., Bryant, L. R., Mobin-Uddin, K., and McKean, H. E. 1973. Determinants of myocardial water content during cardiopulmonary bypass. J. Thorac’ Cardiovasc. Surg. 68:8–16.Google Scholar
  12. 12.
    Wahlen, D. A., Hamilton, D. G., Ganote, C. E., and Jennings, R. B. 1974. Effect of a transient period of ischemia on myocardial cells: 1. Effects on cell volume regulation. Am. J. Cardiol. 74:381–397.Google Scholar
  13. 13.
    Willerson, J. T., Watson, J. T., Hutton, I., Templeton, G. H., and Fixier, D. E. 1975. Reduced myocardial reflow and increased coronary vascular resistance following prolonged myocardial ischemia in the dog. Circ. Res. 36:771–781.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. Amano
    • 1
  • M. Sunamori
    • 1
  • T. Kameda
    • 1
  • T. Okamura
    • 1
  • A. Suzuki
    • 1
  1. 1.Department of Cardiothoracic SurgeryJuntendo University School of MedicineTokyoJapan

Personalised recommendations