Lipopeptide Secondary Metabolites from the Phytopathogenic Bacterium Pseudomonas Syringae
Abstract
Over the past 20 years or so, significant advances have been made in the study of the secondary metabolism of the widespread phytopathogenic Gram-negative bacterium Pseudomonas syringae. Interdisciplinary approach, which required the expertise of plant pathologists, chemists, biochemists and molecular biologists, led to the discovery of a new family of bioactive peptide secondary metabolites. The determination of their structures was pivotal for the investigations on the biosynthetic pathways, their relevance in the development of plant disease, and for the understanding of the molecular bases of their biological activities in plant, microbial and animal cells. In particular, the antibiotic activities of some of these compounds appear very interesting in the perspective of their utilization both in medicine and in agriculture. The goal of this chapter is to summarize the present knowledge in various areas of research on P. syringae peptide metabolites.
Keywords
Antifungal Activity Surf Actin Plant Pathol Lactone Macrocycle Haemolytic ActivityPreview
Unable to display preview. Download preview PDF.
References
- Adetuyi, F.C., Isogai, A., Di Giorgio, D., Ballio, A., and Takemoto, J.Y., 1995, Saprophytic Pseudomonas syringae strani M1 of wheat produces cyclic lipodepsipeptides, FEMS Microbiol. Lett. 131: 63–67.PubMedCrossRefGoogle Scholar
- Agner, G., Kaulin, Y.A., Gurney, P.A., Szabo, Z., Schagina, L.V., Takemoto, J.Y., and Blasko, K., 2000a, Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes, Bioel ectrochem. 52: 161–167.Google Scholar
- Agner, G., Kaulin, Y.A., Schagina, L.V., Takemoto, J.Y., and Blasko, K., 2000b, Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes, Biochim. Biophys. Acta 1466: 79–86.CrossRefGoogle Scholar
- Backman, P.A., and DeVay, J.E., 1971, Studies on the mode of action and biogenesis of the phytotoxin syringomycin, Physiol. Pathol. 1: 215–233.CrossRefGoogle Scholar
- Ballio, A., Barra, D., Bossa, F., Collina, A., Grgurina, I., Marino, G., Paci, M., Pucci, P., Segre, A., and Simmaco, M., 1991, Syringopeptins, new phytotoxic lipodepsipeptides of Pseudomonas syringae pv. syringae, FEBS Lett. 291: 109–112.PubMedCrossRefGoogle Scholar
- Ballio, A., Barra, D., Bossa, F., DeVay, J.E., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Surico, G., 1988, Multiple forms of syringomycin, Physiol. Mol. Plant Pathol. 33: 493–496.CrossRefGoogle Scholar
- Ballio, A., Bossa, F., Camoni, L., Di Giorgio, D., Flamand, M.C., Maraite, H., Nitti, G., Pucci, P., and Scaloni, A., 1996, Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae, FEBS letters 381: 213–216.PubMedCrossRefGoogle Scholar
- Ballio, A., Bossa, F., Collina, A., Gallo, M., Iacobellis, N.S., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Simmaco, M., 1990, Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae, FEBS Lett. 269: 377–380.PubMedCrossRefGoogle Scholar
- Ballio, A., Bossa, F., Di Giorgio, D., Di Nola, A., Manetti, C., Paci, M., Scaloni, A., and Segre, A., 1995, Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25 A. Two-dimensional NMR, distance geometry and molecular dynamics, Eur, J. Biochem. 234: 747–758.Google Scholar
- Ballio, A., Bossa, F., Di Giorgio, D., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Strobel, G.A., 1994a, Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins, FEBS Lett. 355: 96–100.PubMedCrossRefGoogle Scholar
- Ballio, A., Collina, A., Di Nola, A., Maneti, C., Paci, M., and Segre, A., 1994b, Determination of structure and conformation in solution of syringotoxin, a lipodepsipeptide from Pseudomonas syringae pv. syringae by 2D-NMR and molecular dynamics, Struct. Chem. 5: 43–50.CrossRefGoogle Scholar
- Bard, M. 1972, Biochemical and genetic aspects of nystation resistance in Saccharomyces cerevisiae, J. Bacteriol. 111: 649–657.PubMedGoogle Scholar
- Barè, S., Coiro, V.M., Scaloni, A., Di Nola, A., Paci, M., Segre, A.L., and Ballio, A., 1999, Conformations in solution of the fuscopeptins. Phytotoxic metabolites of Pseudomonas fuscovaginae, Eur. J. Biochem. 266: 1–10.CrossRefGoogle Scholar
- Batoko, H., de Kerchove d’Exaerde, A., Kinet, J-M., Bouharmont, J., Gage, R.A., Maraite, H., and Boutry, M., 1998, Modulation of plant plasma membrane H’-ATPase by phytotoxic lipodepsipeptide produced by the plant pathogen Pseudomonas fuscovaginae, Biochim. Biophys. Acta 1372: 216–226.Google Scholar
- Bender, C.L., Alarcón-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. 63: 266–292.Google Scholar
- Bidwai, A.P., and Takemoto, J.Y., 1987, Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides, Proc. Natl. Acad. Sci. 84: 6755–6759.PubMedCrossRefGoogle Scholar
- Bidwai, A.P., Zhang, L., Bachmann, R.C., and Takemoto J.Y., 1987, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin, Plant. Physiol. 83: 39–43.PubMedCrossRefGoogle Scholar
- Blasko, K., Schagina, L.V., Agner, G., Kaulin, Y.A., and Takemoto, J.Y., 1998, Membrane sterol composition modulates the pore forming activity of syringomycin E in human red blood cells, Biochim. Biophys. Acta 1373: 163–169.CrossRefGoogle Scholar
- Brodey, C.L., Rainey, B.P., Tester, M., and Johnstone, K., 1991, Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin, Mol. Plant-Microbe Interact. 4: 407–411.CrossRefGoogle Scholar
- Bradbury, J.F., 1986, Guide to Plant Pathogenic Bacteria, Kew CAB International Mycological Institute, London.Google Scholar
- Bull, C.T., Stack, J.P., and Smilanick, J.L., 1997, Pseudomonas syringae strain ESC-10 and ESC-11 survive in wounds on citrus and control green and blue molds of citrus, Biol. Control 8: 81–88.Google Scholar
- Bull, C.T., Wadsworth, M.L., Sorensen, K.M., Takemoto, J.Y., Austin, R.K., and Smilanick, J.L., 1998, Syringomycin E produced by biological control agens controls green mold on lemons, Biol. Control 12: 89–95.CrossRefGoogle Scholar
- Bultreys, A., and Gheysen, I., 1999, Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants, Appl. Environ. Microbiol. 65: 1904–1909.PubMedGoogle Scholar
- Camoni, L., Di Giorgio, D., Marra, M., Aducci, P., and Ballio, A., 1995, Pseudomonas syringae pv. Syringae phytotoxins reversibly inhibit the plasma membrane H+-ATPase and disrupt unilamellar liposomes, Biochem. Biophys.Res.Com. 214: 118–124.Google Scholar
- Che, F.S., Kasamo, K., Fuchuchi, N., Isogai, A., and Suzuki, A., 1992, Bacterial phytotoxins, syringomycin, syringostatin and syringotoxin, exert their effect on the plasma membrane hydrogen ion-ATPase partly by a detergent-like action and partly by inhibition of the enzyme, Physiol. Plant. 86: 518–524.CrossRefGoogle Scholar
- Chen, S.H., Sun, X., Boyer, R., Paschal, J., Zeckner, D., Current, W., Zweifel, M., and Rodriguez, M., 2000, Syntheses and biological evaluation of novel pseudomycin side-chain analogues, Part 2, Bioorg. Med. Chem. Letters 10: 2107–2110.CrossRefGoogle Scholar
- Cliften, P., Wang, Y., Mochizuchi, D., Miyakawa, T., Wangspa, R., Hughes, J., and Takemoto, J. Y., 1996, Syr2, a gene necessary for syringomycin growth inhibition of Saccharomyces cerevisiae, Microbiol. 142: 477–484.Google Scholar
- Coiro, V.M., Segre, A.L., Di Nola, A., Paci, M., Grottesi, A., Veglia, G., and Ballio, A., 1998, Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data, Eur. J. Biochem. 257: 449–456.PubMedCrossRefGoogle Scholar
- Conti, E., Stachelhaus, T., Marahiel, MA, and Brick, P., 1997, Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J. 16: 4171–4183.CrossRefGoogle Scholar
- Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Della Volpe, C., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999a, The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological membranes: a comparison of syringotoxin, syringomycin and two syringopeptins, Mol. Plant-Microbe Interact. 12: 391–400.PubMedCrossRefGoogle Scholar
- Dalla Serra, M., Bernhart, I., Nordera, P., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999b, Conductive properties and gating of channels formed by syringopeptin 25 A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes, Mol. Plant-Microbe Interact. 12: 401–409.PubMedCrossRefGoogle Scholar
- De Lucca, A.J., Jacks, T.J., Takemoto, J.Y., Vinyard, B., Peter, J., Navarro, E., and Walsh, T.J., 1999, Fungal lethality, binding and cytotoxicity of syringomycin E., Antimicrob. Agents and Chemother. 43: 371–373.Google Scholar
- De Lucca, A.J., and Walsh, T.J., 1999, Antifungal peptides: novel therapeutic compounds against emerging pathogens, Antimicrob. Agents and Chemother. 1: 1–11.Google Scholar
- DeVay, J.E., Lukezic, F.L., Sinden, S.L., English, H., and Coplin, D.L., 1968, A biocide produced by pathogenic isolates of Pseudomonas syringae and its possible role in the bacterial canker of peach trees, Phytopathol. 58: 95–101.Google Scholar
- Di Giorgio, D., Camoni, L., and Ballio, A., 1994, Toxins of Pseudomonas syringae pv. syringae affect proton transport across the plasma membrane of maize, Physiol. Plant. 91: 741–746.CrossRefGoogle Scholar
- Di Giorgio, D., Camoni, L., Marchiafava, C., and Ballio, A., 1997, Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU 16H, Phytochem. 45: 1385–1391.CrossRefGoogle Scholar
- Di Giorgio, D., Camoni, L., Mott, K.A., Takemoto, J.Y., and Ballio, A., 1996a, Syringopeptins, Pseudomonas syringae pv. syringae pytotoxins, resemble syringomycin in closing stomata, Plant Pathol. 45: 564–571.CrossRefGoogle Scholar
- Di Giorgio, D., Lavermicocca, P., Marchiafava, C., Camoni, L., Surico, G., and Ballio, A., 1996b, Effect of syringomycin E and syringopeptins on isolated plant mitochondria, Physiol. Mol. Plant Pathol. 48: 325–334.CrossRefGoogle Scholar
- Emanuele, M.C., Scaloni, A., Lavermicocca, P., Iacobellis, N.S., Camoni, L., Di Giorgio, D., Pucci, P., Paci, M., Segre, A., and Ballio, A., 1998, Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata, FEBS Lett. 433: 317–320.PubMedCrossRefGoogle Scholar
- Feigin, A.M., Schagina, L.V., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., 1997, The effect of sterol on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E., Biochim. Biophys. Acta 1324: 102–110.PubMedCrossRefGoogle Scholar
- Feigin, A.M., Takemoto, J.Y., Wangspa, R., Teeter, J.H., and Brand, J.G., 1996, Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers, J. Membr. Biol. 149: 41–47.PubMedCrossRefGoogle Scholar
- Flamand, M.C., Pelsser, S., Ewbank, E., and Maraite, H., 1996, Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae, Physiol. Mol. Plant Pathol. 48: 217–231.CrossRefGoogle Scholar
- Fogliano, V., Gallo, M., Vinale, F., Ritieni, A., Randazzo, G., Greco, M.L., Lops, R., and Graniti, A., 1999, Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans, Physiol. Mol. Plant Pathol. 55: 255–261.CrossRefGoogle Scholar
- Fukuchi, N., Isogai, A., Nakayama, J., and Suzuki, A., 1990a, Structure of syringotoxin B, a phytotoxin produced by citrus isolates of Pseudomonas syringae pv. syringae, Agric. Biol. Chem. 54: 3377–3379.PubMedCrossRefGoogle Scholar
- Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., and Suzuki, A., 1992a, Isolation and structural elucidation of syringostatins, phytotoxins produced by Pseudomonas syringae pv. syringae lilac isolate, J. Chem. Soc. Perkin Trans 1: 875–880.CrossRefGoogle Scholar
- Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K, Takemoto, J.Y., and Suzuki, A., 1992 b, Structure and stereochemistry of three phytoxins, syringomycin, syringotoxin and syringostatin, produced by Pseudomonas syringae pv. syringae, J. Chem. Soc. Perkin Trans. 1: 1149–1157.Google Scholar
- Fukuchi, N., Isogai, A., and Suzuki, A., 1991, Stereochemistry of syringostatin, syringomycin and syringotoxin, phytotoxins of Pseudomonas syringae pv. syringae, Agric. Biol. Chem. 55: 625–627.CrossRefGoogle Scholar
- Fukuchi, N., Isogai, A., Yamashita, S., Suyama, K., Takemoto, J.Y., and Suzuki, A., 1990b, Structure of phytotoxin syringomycin produced by sugar cane isolate of Pseudomonas syringae pv. syringae, Tet. Lett. 31: 1589–1592.CrossRefGoogle Scholar
- Gallo, M., Fogliano, V., Ritieni, A., Peluso, L., Greco, M.L., Lops, R., and Graniti, A., 2000, Immunoassessment of Pseudomonas syringae lipodepsipeptides (syringomycins and syringopeptins), Phytopathol. mediterr. 39: 410–416.Google Scholar
- Gardan, L., Shafif, H.,and Grimont, P.A.D., 1997, DNA relatedness among pathovars of P. syringae and rekated bacteria, in: Pseudomonas syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian and J. von Kietzell, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 445–448.CrossRefGoogle Scholar
- Gevers, W., Kleinkauf, H., and Lipmann, F., 1968, The activation of amino acids for biosynthesis of gramicidin S., Proc. Nat. Acad Sci. 60: 269–276.PubMedCrossRefGoogle Scholar
- Gonzalez, C.F., DeVay, J.E., and Wakeman, R.J., 1981, Syringotoxin: a phytotoxin unique to citrus isolates of Pseudomonas syringae, Physiol. Plant Pathol. 18, 41–50.Google Scholar
- Grgurina, I., Barca, A., Cervigni, S., Gallo, M., Scaloni, A., and Pucci, P., 1994, Relevance of chlorine-substituent for the antifugal activity of syringomycin and syringotoxin, metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, Experientia 50: 130–133.PubMedCrossRefGoogle Scholar
- Grgurina, I., and Benincasa, M., 1994, Evidence of the non ribosomal biosynthetic mechanism in the formation of syringomycin and syringopeptin, bioactive lipodepsipeptides of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, It. Biochem. Soc. Trans. 5: 143.Google Scholar
- Grgurina, I., Gross, D.C., Iacobellis, N.S., Lavermicocca, P., Takemoto, J.Y., and Benincasa, M., 1996, Phytotoxin production by Pseudomonas syringae pv. syringae: syringopeptin production by syr mutants defective in biosynthesis or secretion of syringomycin, FEMS Microbiol. Lett. 138: 35–39.CrossRefGoogle Scholar
- Grgurina, I., Iacobellis, N.S., Ippolito, C., and Curci, R., 1997b, Detection of Syringomycin in plant tissues infected with Pseudomonas syringae pv. syringae, in: Pseudomonas syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian and J. von Kietzell, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 188–191.CrossRefGoogle Scholar
- Grgurina, I., and Mariotti, F., 1999, Biosynthetic origin of syringomycin and syringopeptin 22, toxic secondary metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae, FEBS Lett. 462: 151–154.PubMedCrossRefGoogle Scholar
- Grgurina, I., Scaloni, A., and Iacobellis, N.S., 1997a, A novel syringopeptin produced by a bean strain of Pseudomonas syringae pv. syringae, It. Biochem. Soc. Trans. 9: 397.Google Scholar
- Grigoriev, P., Schlegel, R., Domberger, K., and Grafe, U., 1995, Formation of membrane pores by aurantimycins A and B, new lipopeptide antibiotics from Streptomyces aurantiacus, Bioelectrochem. and Bioen. 36: 57–59.CrossRefGoogle Scholar
- Grilley, M.M., Stock, S.D., Dickson, R.C., Lester, R.L., and Takemoto, J.Y., 1998, Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae, J. Biol. Chem. 273: 11062–11068.PubMedCrossRefGoogle Scholar
- Gross, D.C., Cody, S., Proebsting, E.L. Jr, Radamaker, G.K., and Spotts, R.A., 1984, Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous tree orchards, Phytopathology 74: 241–348.CrossRefGoogle Scholar
- Gross, D.C., and DeVay, J.E., 1977, Production and purification of syringomycin, a phytotoxin produced by Pseudomanas syringae, Physiol. Plant Pathol. 11: 13–28.Google Scholar
- Gross, D.C., DeVay, J.E., and Stadtman, F.H., 1977b, Chemical properties of syringomycin and syringotoxin: toxigenic peptides produced by Pseudomonas syringae, J. Appl. Bacteriol. 43: 453–464.CrossRefGoogle Scholar
- Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G., I998a, Characterization of the syringomycin synthetase gene cluster, J. Biol. Chem. 273: 32857–32863.Google Scholar
- Guenzi, E., Galli, G., Grgurina, I., Pace, E., Ferranti, P., and Grandi, G., 1998b, Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and activity of the multienzyme complex, J. Biol. Chem. 273: 14403–14410.PubMedCrossRefGoogle Scholar
- Hama, H., Young, D.A., Radding, J.A., Ma, D., Tang, J., Stock, S.D., and Takemoto, J.Y., 2000, Requirement of sphingolipid alpha-hydroxylation for fungicidal action of syringomycin E., FEBS Lett. 478: 26–28.PubMedCrossRefGoogle Scholar
- Harrison, L., Teplow, D. B., Rinaldi, M., and Strobel, G. A., 1991, Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity, J. Gen. Microbiol. 137: 2857–2865.PubMedCrossRefGoogle Scholar
- Hemmi, K., Julmanop, C., Hirata, D., Tsuchiya, E., Takemoto, J.Y., and Miyakawa, T., 1995, The physiological roles of membrane ergosterol as revealed by the phenotypes of syrllerg3 null mutant of Saccharomyces cerevisiae, Biosci. Biotech. Biochem. 59: 482–486.CrossRefGoogle Scholar
- Hiramoto,M., Okada,K., and Nagai, 5.,1970, The revised structure of viscosin, a peptide antibiotic, Tet. Lett. 13: 1087–1090.Google Scholar
- Hirano, S.S., and Upper, C.D., 1990, Population biology and epidemiology of Pseudomonas syringae, Annual Review of Phytopathology 28: 155–177.CrossRefGoogle Scholar
- Hutchison, M.L., and Gross, D.C., 1997, Lipopeptide phytotoxin produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin, Mol. Plant Microbe Interact. 10: 347–354.PubMedCrossRefGoogle Scholar
- Hutchison, M.L, and Johnstone, K., 1993, Evidence of the involvement of the surface active properties on the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agarus bisporus, Physiol. Mol. Plant Pathol. 42: 373–384.CrossRefGoogle Scholar
- Hutchison, M.L., Tester, M.A., and Gross, D.C., 1995, Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction, Mol. Plant Microbe Interact. 8: 1–10.CrossRefGoogle Scholar
- lacobellis, N.S., and Lavermicocca, P., 1990, Evidence for the presence of syringomycin-like substance in tissues infected with Pseudomonas syringae pv. syringae, in: 8rn Congress of Mediterranean Phytopathological Union, Agadir, Morocco, pp. 187–188.Google Scholar
- Iacobellis, N.S., Lavermicocca, P., Grgurina, I., Simmaco, M., and Ballio, A., 1992, Phytotoxic properties of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 40: 107–116.CrossRefGoogle Scholar
- Isogai, A., Iguchi, H., Nakayama, J., Kusai, J., Takemoto, J.Y., and Suzuki, A., 1995, Structural analysis of new syringopeptins by tandem mass spectrometry, Biosci. Biotech. Biochem. 59: 1374–1376.CrossRefGoogle Scholar
- Jamison, J., Levy, S., Sun, X., Zeckner, D., Current, W., Zweifel, M., Rodriguez, M., Turner, W., and Chen, S.H., 2000, Syntheses and antifungal activity of pseudomycin side-chain analogues, Part 1, Bioorg. Med. Chem. Letters 10: 2101–2105.CrossRefGoogle Scholar
- Janisiewicz, W.J., and Bors, B., 1995, Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruits, App. Environ. Microbiol. 9: 3261–3267.Google Scholar
- Janisiewicz, W.J., and Jeffers, S.N., 1997, Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage, Crop Protection 16: 629–633.CrossRefGoogle Scholar
- Janisiewicz, W.J., and Marchi, A., 1992, Control of storage rots on various pear cultivars with saprophytic strain of Pseudomonas syringae, Plant Disease 76: 555–560.CrossRefGoogle Scholar
- Julmanop, C., Takano, Y., Takemoto, J.Y., and Miyakawa, T., 1993, Protection by sterols against the cytotoxicity of syringomycin in the yeast Saccharomyces cerevisiae, J. Gen. Microbiol. 139: 2323–2327.PubMedCrossRefGoogle Scholar
- Kaulin, Y.A., Schagina, L.V., Bezrukov, S.M., Maley, V.V., Feigin, A.M., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., 1998, Cluster organization of ion channel formed by the antibiotic syringomycin E in bilayer lipid membranes, Biophys. J. 74: 2918–2925.Google Scholar
- Kauss, H., 1987, Some aspects of calcium-dependent regulation in plant metabolism, Annu. Rev. Plant Physiol. 38: 47–72.CrossRefGoogle Scholar
- Kauss, H., 1990, Role of the plasma membrane in host-pathogen interactions; pages 320–350 in: The Plant Plasma Membrane-Structure, Function and Molecular Biology. Larson, C. amd Moller, I. M. (eds) Springer-Verlag, Berlin.Google Scholar
- Kauss, H., Waldmann, T., Jeblick, W., and Takemoto, J.Y., 1991, The phytotoxin syringomycin elicits Cat+-dependent callose synthesis in suspension-cultured cells of Catharanthus roseus, Physiol. Plant. 81: 134–138.CrossRefGoogle Scholar
- Kenwick, S.,and Jacobsen, B.J., 1988, Biological control of Fusarium dry rot on potato with antagonistic bacteria I commercial formulation, Phytopathology 88: 47.Google Scholar
- Kleinkauf H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics, Ann. Rev. Microbiol. 41: 259–289. Kleinkauf, H., and von Döhren, H., 1996, A nonribosomal system of peptide biosynthesis, Eur. J. Biochem. 236: 335–351.CrossRefGoogle Scholar
- Klement, Z., Rudolph, K., and Sands, D.C., 1990, Methods in Phytobaceriolgy, Akademiai Kiado, Budapest.Google Scholar
- Layock, M.V., Hildebrand, P.D., Thibault, P., Walter, J.A., and Wright, J.L.C., 1991, Viscosin, a potent petidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens, J. Agric. Food Chem. 39: 438–489.Google Scholar
- Lam, B. S., Strobel, G. A., Harrison, L. A., and Lam, S T, 1987, Transposon mutagenesis and tagging of fluorescent Pseudomonas: antimycotic production is necessary for control of Dutch elm disease, Proc. Natl. Acad. Sci. 84: 6447–6451.PubMedCrossRefGoogle Scholar
- Latoud, C., Peypoux, F., Michel, G., Genet, R., and Morgat, J.L., 1986, Interactions of antibiotics of the iturin group with human erythrocytes, Biochim. Biophys. Acta 856: 526–535.PubMedCrossRefGoogle Scholar
- Latoud, C., Peypoux, F., and Michel,G.,1990, Interaction of iturin A, a lipopeptide antibiotic,with Saccharomyces cerevisiae cells: influence of the sterol membrane composition, Can J. Microbiol. 36: 384–389.Google Scholar
- Lavermicocca, P., Iacobellis, N.S., Simmaco, M., and Graniti, A., 1997, Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins, Physiol. Mol. Plant Pathol. 50: 129–140.CrossRefGoogle Scholar
- Little, O.K., Bostock, R.M., and Kirkpatrick, B.C., 1998, Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California, App. Environ. Microbiol. 10: 3818–3823.Google Scholar
- Maget-Dana, R., Harnois, I., and Ptak, M., 1989, Interactions of the lipopeptide antifungal iturin A with lipids in mixed monolayers, Biochim. Biophys. Acta. 981: 309–314.PubMedCrossRefGoogle Scholar
- Maget-Dana, R., Ptak, M. L., Peypoux, F., and Michel, G., 1985, Pore-forming properties of iturin A, a lipopeptide antibiotic, Biochim. Biophys. Acta 815: 405–409.PubMedCrossRefGoogle Scholar
- Maget-Dana, R., and Ptak, M., 1995, Interactions of surfactins with membrane models, Biophys. J. 68: 1937–1943.PubMedCrossRefGoogle Scholar
- Maget-Dana, R., Thimon, L., Peypoux, F., and Ptak, M., 1992, Surfactin/iturin interactions may explain the synergistic effect of surfactin on the biological properties of iturin A, Biochimie 74: 1047–1051.PubMedCrossRefGoogle Scholar
- Marahiel, M.A., Stachelhaus, T., and Moots, H.D., 1997, Modular peptide synthetases involved in nonribosomal peptide synthesis, Chem. Rev. 97: 2651–2675.PubMedCrossRefGoogle Scholar
- Marshall, E., 1994, The emerging fungal threat, Science 266: 1632–1633.CrossRefGoogle Scholar
- Metzger, J. W., Sawyer, W. H., Wille, B., Biesert, L., Bessler, W. G., and Jung, G., 1993, Interaction of immunologically-active lipopeptides with membranes, Biochim. Biophys. Acta. 1149: 29–39.PubMedCrossRefGoogle Scholar
- Mo, Y.Y., Geibel, M., Bonsall, R.F., and Gross, D.C., 1995, Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB gene required for the synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae, Plant Physiol. 107: 603–612.PubMedGoogle Scholar
- Mo, Y. Y., and Gross, D. C., 1991a, Expression in vitro and during plant pathogenesis of the syrB gene required for syringomycin production by Pseudomonas syringae pv. syringae, Mol. Plant Microbe Interact. 4: 28–36.CrossRefGoogle Scholar
- Mo, Y.Y., and Gross, D.C., 1991b, Plant signal molecules activate the syrB gene, wich is required for syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 18: 5784–5792.Google Scholar
- Morgan, K.M., and Chatterjee, A.K., 1985, Isolation and characterization of Tn5 insertion mutants of Pseudomonas syringae pv. syringae altered in the production of the peptide phytotoxin syringotoxin, J. Bacteriol. 14–18.Google Scholar
- Morgan, K.M., and Chatterjee, A.K., 1988, Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv. syringae, J Bacteriol. 170: 5689–5697.PubMedGoogle Scholar
- Mortshire-Smith, R.J., Nutkins, J.C., Packuran, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K., and Williams, D.H., 1991, Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans, Tetrahedron 47: 3645–3654.CrossRefGoogle Scholar
- Mott, K.A., and Takemoto, J.Y., 1989, Syringomycin, a bacterial phytotoxin, closes stomata, Plant Physiol. 90: 1435–1439.PubMedCrossRefGoogle Scholar
- Neu, T.R., Hartner,T., and Poralla, K., 1990, Surface active properties of viscosin, a peptidolipid antibiotic, Appl. Microbiol. Biotechnol. 32: 518–520.Google Scholar
- Nutkins, J.C., Mortshire-Smith, R.J., Packmamn, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K., and Williams, D.H., 1991, Structure determination of tolaasin, an extracellular lipodepsipeptide produced by mushroom pathogen Pseudomonas tolaasii Paine, J. Am. Chem. Soc. 113: 2621–2627.CrossRefGoogle Scholar
- Paine, S.G., 1919, Studies on bacteriosis II. A brown blotch disease of cultivated mushrooms, Annals of Applied Biology 5: 206–219.CrossRefGoogle Scholar
- Paynter, V.A., and Alconero, R., 1979, A specific fluorescent antibody for detection of syringomycin in infected peach tree tissues, The Am. Physiopathol. Soc. 69: 493–496.Google Scholar
- Penner, D., DeVay, J.E., and Backman, P., 1969, The influence of syringomycin on ribonucleic acid synthesis, Plant Physiol. 44: 806–808.PubMedCrossRefGoogle Scholar
- Potera, C., 1994, From bacteria: a new weapon against fungal infection, Science 265: 605.PubMedCrossRefGoogle Scholar
- Quentin, M.J., Besson, F., Peypoux, F., and Michel, G., 1982, Action of peptidolipidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on heamolysis, Biochim. Biophys. Acta 684: 207–211.PubMedCrossRefGoogle Scholar
- Quigley, B.N., and Gross, D.C., 1994, Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes,and activation of phytotoxin production by plant signal molecules, Mol. Plant-Microbe Interact. 7: 78–99.PubMedCrossRefGoogle Scholar
- Quigley, B.N., Mo, Y.Y., and Gross, D.C., 1993, SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-bindig secretion proteins, Mol. Microbiol. 9: 787–801.Google Scholar
- Reidl, H.H., Grover, T.A., and Takemoto, J.Y., 1989, Phosphorus-31 NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae, Biochim. Biophys. Acta 1010: 325–329.PubMedCrossRefGoogle Scholar
- Reidl, H.H., and Takemoto, J.Y., 1987, Mechanism of action of bacterial phytotoxin, syringomycin. Simultaneous measurement of early responses in yeast and maize, Biochim. Biophys. Acta 898: 59–69.CrossRefGoogle Scholar
- Rainey, P.B., Brodey, C.L., and Johnstone, K., 1991, Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii, Physiol. Mol. Plant Pathol. 39: 57–70.CrossRefGoogle Scholar
- Risse, D., Beiderbeck, H., Taraz, K., Budzikiewicz, H., and Gustine, D., 1995, Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata, Z. Naturforsch 53: 295–304.Google Scholar
- Rodriguez, M.J., Belvo, M., Morris, R., Zeckner, D., Current, W.L., Sachs, R.K., and Zweifel, M.J., 2001, The synthesis of pseudomycin C via a novel acid promoted side-chain deacylation of pseudomycin A, Bioorg. Med. Chem. Lett. 11: 161–164.PubMedCrossRefGoogle Scholar
- Scaloni, A., Bachmann, R.C., Takemoto, J.Y., Barra, D., Simmaco, M., and Ballio, A., 1994, Stereochemical structure of syringomycin, a phytotoxic metabolite of Pseudomonas syringae pv. syringae, Nat. Prod. Letters 4: 159–164.CrossRefGoogle Scholar
- Scaloni, A., Camoni, L., Di Giorgio, D., Scortichini, M., Cozzolino, R., and Ballio, A., 1997, A new syringopeptin produced by Pseudomonas syringae pv. syringae strain isolated from diseased twigs of laurel, Physiol. Mol. Plant Pathol. 51: 259–264.CrossRefGoogle Scholar
- Scholz-Schroeder, B.K., Hutchinson, M.L., Grgurina, I., and Gross, D.C., 2001, The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B 301 D on the basis of sypA and syrB 1 biosynthesis mutant analysis, Mol. Plant Microbe Interact. 14: 336–348.Google Scholar
- Scheffer, R.J., 1983, Biological control of Dutch elm disease by Pseudomonas species, Annals Appl. Biol. 103: 21–30.CrossRefGoogle Scholar
- Segre, A., Bachman, R.C., Ballio, A., Bossa, F., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomycin A1, E and G., FEBS Lett. 255: 27–31.CrossRefGoogle Scholar
- Sinden, S.L., De Vay, J.E., and Backman, P.A., 1971, Properties of syringomycin, a wide spectrum antibiotic and phytotoxin produced by Pseudomonas syringae, and its role in the bacterial canker disease of peach trees, Physiol. Plant Pathol. 1: 199–210.CrossRefGoogle Scholar
- Singh, V.K., and Takemoto, J.Y., 1996, Suppression of mitogen-induced lymphocyte proliferation by syringomycin E., FEMS Immunol. Medical Microbiol. 15: 177–179.CrossRefGoogle Scholar
- Sorensen, K.N., Kim, K-H, and Takemoto, J.Y., 1996, In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae, Antimicrob. Agents and Chemother. 40: 2710–2713.Google Scholar
- Sorensen, K.N., Kim, K-H, and Takemoto, J.Y., 1998a, PCR detection of cyclic lipodepsinonpeptide-producing Pseudomonas syringae pv. syringae and similarity of strains, Appl. Environ. Microbiol. 64: 226–230.PubMedGoogle Scholar
- Sorensen, K.N., Wangstrom, A.A., Allen, S.D., and Takemoto, J.Y., 1998b, Efficacy of syringomycin E in a murine model of vaginal candidiasis, J. Antibiotics 51: 743–749.CrossRefGoogle Scholar
- Stachelhaus, T., Mootz, H.D., and Marahiel, M.A., 1999, The specificity-conferring code of adenylation domains in non ribosomal peptide synthetase, Chem. Biol. 6: 493–505.PubMedCrossRefGoogle Scholar
- Stapp, C., 1958, Pseudomonas syringae van Hall, in: Pflanzenpathogene Bakterien,Paul Parey in Berlin and Hamburg, pp. 198–204.Google Scholar
- Surico, G., and DeVay, J.E., 1982, Effect of syringomycin and syringotoxin produced by Pseudomonas syringae pv. syringae on structure and function of mitochondria isolated from locus spot resistant and susceptible maize lines, Physiol. Plant Pathol. 21: 39–53.CrossRefGoogle Scholar
- Stock, S.D., Hama, H., Radding, J.A., Young, D.A., and Takemoto, J.Y., 2000, Syringomycin E inhibition of Saccharomyces cerevisiae: requirement for biosynthesis of sphingolipids with very-long-chain fatty acids and mannose-and phosphoinositol-containing head groups, Antimicrob. Agents and Chemother. 44: 1174–1180.CrossRefGoogle Scholar
- Taguchi, N., Takano, Y., Julmanop, C., Wang, Y., Stock, S., Takemoto, J., and Miyakawa, T., 1994, Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin, Microbiology 140: 353–359.PubMedCrossRefGoogle Scholar
- Takemoto, J.Y., Yu, Y., Stock, S.D., and Miyakawa, T., 1993, Yeast genes involved in growth inhibition by Pseudomonas syringae pv syringae syringomycin family lipodepsipeptides, FEMS Microbiof. Lett. 114: 339–342.CrossRefGoogle Scholar
- Takemoto, J.Y., Zhang, L., Taguchi, N., Tachikawa, T., and Miyakawa, T., 1991, Mechanism of action of the phytotoxin syringomycin: a resistant mutant of Saccharomyces cerevisiae reveals an involvement of Cat’ transport, J. Gen. Microbiol. 137: 653–659.CrossRefGoogle Scholar
- Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., and Michel, G., 1992, Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis, Biotecnol. Appl. Biochem. 16: 144–151.Google Scholar
- Tolaas, A.G., 1915, A bacterial disease of cultivated mushrooms, Phytopathology 5: 51–54.Google Scholar
- van Hall, C.J.J., 1902, De seringenziegte, veroorzaakt door Pseudomonas syringae nov. sp. Bijdragen tot Kennis der bakterieele Plantenziekten, Amsterdam, 409 p.Google Scholar
- Vassilev, V., Lavermicocca, P., Di Giorgio, D., and Iacobellis, N.S., 1996, Production of syringomycins and syringopeptins by Pseudomonas syringae pv. atrofaciens, Plant Pathology 45: 316–322.CrossRefGoogle Scholar
- von Döhren, H., Keller, V., Vater, J., and Zocher, R., 1997, Multifunctional peptide synthetases, Chem. Rev. 97: 2675–2705.CrossRefGoogle Scholar
- von Kietzel, J., and Rudolph, K., 1997, Wheat diseases caused by Pseudomonas syringae pathovars, in: The Bacterial Diseases of Wheat: Concepts and Methods of Disease Management, E. Duvellier, L. Fucikovsky and K. Rudolph, eds., Mexico, CIMMYT, pp. 49–57.Google Scholar
- Williamson, S.M., Guzman, M., Anas,O., Martin, D.H., Jin, X., and Sutton,T.B., 1999, Evaluation of potential biocontrol agents for crown rot of banana, Phytopathology 89: S85.Google Scholar
- Xu, G.W., and Gross D.C., 1988a, Evaluation of the role of syringomycin in plant pathogenesis by using Tn5 mutants of Pseudomonas syringae pv. syringae defective in syringomycin production, Appl. Environ. Microbiol. 54: 1345–1353.PubMedGoogle Scholar
- Xu, G.W., and Gross, D.C., 1988b, Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae, J. Bacteriol. 170: 5680–5688.PubMedGoogle Scholar
- Zhang, Y., Boyer, R., Sun, X., Paschal, J., and Chen, S.H., 2000, Serendipitous synthesis of novel dehydro-and dechloro-pseudomycin B derivatives, Bioorg. Med. Chem. Lett., 10: 775–778.PubMedCrossRefGoogle Scholar
- Zhang, J.H., Quigley, N.B., and Gross, D.C., 1995, Analysis of the syrB and syrC gene of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism, J. Bacteriol. 177: 4009–4020.PubMedGoogle Scholar
- Zhang, J.H., Quigley, N.B., and Gross, D.C., 1997, Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae, Appl. Environ. Microbiol. 63: 2771–2778.PubMedGoogle Scholar
- Zhang, L., and Takemoto, J.Y., 1986, Mechanism of action of Pseudomonas syringae phytotoxin, syringomycin. Interaction with the plasma membrane of wild-type and respiratory-deficient strains of Saccharomyces cerevisiae, Biochim. Biophys. Acta 861: 201–204.PubMedGoogle Scholar
- Zhang, L., and Takemoto, J.Y., 1987, Effects of Pseudomonas syringae pv. syringae phytotoxin, syringomycin, on plasma membrane functions of Rhodotorula pilimanae, Phytopathol. 77: 297–303.CrossRefGoogle Scholar
- Zhang, L., and Takemoto, J.Y., 1989, Syringomycin stimulation of potassium efflux by yeast cells, Biochim. Biophys. Acta 987: 171–175.CrossRefGoogle Scholar
- Zhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., and Chen, S-H., 2001a, 8-amido-bearing pseudomycin B (PSB) analogue: novel antifungal agents, Bioorg. Med. Chem. Letters 11: 123–126.Google Scholar
- Zhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., Gidda, J., Rodriguez, M., and Chen, S-H., 200lb, Syntheses and antifungal activities of novel 3-amido bearing pseudomycin analogues, Bioorg. Med. Chem. Letters 11: 903–907.Google Scholar
- Zimmerman, S., Ehrhardt, T., Plesch, G., and Müller-Röber, 1999, Ion channels in plant signaling, Cell. and Mol. Life Sci. 55: 183–203.CrossRefGoogle Scholar
- Ziegler, W., and Pavlovkin, J., 1985, Syringotoxin, ein phytotoxin von Pseudomonas syringae pv. syringae, erzeugt ionenkanäle in bimolekularen lipid membranen, Acta Phytopathologica Academiae Scientarum Hungaricae 20: 35–45.Google Scholar
- Ziegler, W., Pavlovkin, J., Remis, D., and Pokorny, J., 1986, The anionic/cationic selectivity of the syringotoxin channel, Biologia (Bratislava) 41: 1091–1096.Google Scholar