Thermoresponsive Phytotoxin Production in Plant Pathogenic Bacteria

  • Matthias S. Ullrich
Chapter

Abstract

Besides an intensively studied type III secretory system, the Hrp (hypersensitive response and pathogenicity) system, which delivers so-called avirulence gene products to the host cell causing pathogenicity, virulence factors such as phytotoxins, exopolysaccharides, plant hormones, and extracellular enzymes significantly contribute to the disease development in pathogenic plant-microbe interactions (Alfano and Collmer, 1996). It remains to be determined how and under which environmental conditions most of these virulence factors affect the disease outcome and lead to an increased fitness of the producing pathogens inside the plant. Opportunistic plant pathogens like Pseudomonas syringae preferably infect their host plants under conditions of high humidity and low temperature. Plants, as poikilothermic organisms do not maintain a given temperature but rather adjust to the environmental temperature regime they are exposed to. This complicates a direct comparison of temperature-dependent processes in plant pathogens with the well-studied thermoregulation of virulence factors in human and animal pathogens (Hurme and Rhen, 1998). While temperatures of 37–41°C signal to animal pathogens their arrival inside the warm-blooded host, numerous virulence factors of phytopathogens like Erwinia amylovora, Agrobacterium tumefaciens, E. chrysanthemi, and P. syringae are preferentially expressed, secreted, or assembled at lower temperatures, such as 18–22°C. It is therefore intriguing to assume that general principles govern thermo-adaptation of plant pathogens that are clearly different form those regulatory circuits and cascades in human and animal pathogens. Little is known about those general principles. Therefore, thermoresponsive synthesis of phytotoxins in P. syringae represents an excellent model to study them.

Keywords

Transcriptional Fusion Plant Pathogenic Bacterium Ornithine Carbamoyltransferase Predict Translation Product Numerous Virulence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón-Chaidez, F.J., Perialoza-Vazquez, A., Ullrich, M., and Bender, C.L., 1999, Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae, Plasmid 42: 210–220.PubMedCrossRefGoogle Scholar
  2. Alfano, J.R., and Collmer, A., 1996, The type Ill (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death, J. Bacteriol. 179: 5655–5662.Google Scholar
  3. Banta, L. M., Bohne, J., Lovejoy, S. D., and Dostal, K., 1998, Stability of the Agrobacterium tumefaciens VirB I0 protein is modulated by growth temperature and periplasmic osmoadaptation, J. Bacteriol. 180: 6597–6606.PubMedGoogle Scholar
  4. Bender, C.L., Alarcón-Chaidez, F.J., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. Rev. 63: 266–292.Google Scholar
  5. Bender, C.L., Liyanage, H., Palmer, D.A., Ullrich, M., Young, S.A., and Mitchell, R.E., 1993, Characterization of the genes controlling biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid, Gene 133: 31–38.PubMedCrossRefGoogle Scholar
  6. Bender, C.L., Stone, H.E., Sims, J.J., and Cooksey, D.A., 1987, Reduces pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production, Physiol. Mol. Plant Pathol. 30: 273–283.CrossRefGoogle Scholar
  7. Bender, C.L., Young, S.A., and Mitchell, R.E., 1991, Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae, Appl. Environm. Microbiol. 57: 993–999.Google Scholar
  8. Budde, LP., Rohde, B.H., Bender, C.L., and Ullrich, M.S., 1998, Growth phase and temperature influence promoter activity, transcript abundance, and protein stability during biosynthesis of the Pseudomonas syringae phytotoxin coronatine, JBacteriol. 180: 1360–1367.Google Scholar
  9. Budde, I.P., and Ullrich, M.S., 2000, Interactions of Pseudomonas syringae pv. glycinea with host and non-host plants in relation to temperature and phytotoxin synthesis, Mol. Plant-Microbe Interact. 13: 951–961.PubMedCrossRefGoogle Scholar
  10. De La Fuente-Martinez, J., Mosquada-Cano, G., Alvarez-Morales, A., and Herrera-Estrella, L., 1992, Expression of a bacterial phaseolotoxin-resistant ornithyl transcarbamoylase in transgenic tobacco confers resistance to Pseudomonas syringae pv. phaseolicola. Bio/Technology 10: 905–909.CrossRefGoogle Scholar
  11. Feys, B.J., Benedetti, C.E., Penfold, C.N., and Turner, J.G., 1994, Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen, Plant Cell 6: 751–759.Google Scholar
  12. Göransson, M., and Uhlin, B.E., 1984. Environmental temperature regulates transcription of a virulence pili operon in E. coli, EMBOJ. 3: 2885–2888.Google Scholar
  13. Goss, R.W., 1940, The relation of temperature to common halo blight of beans, Phytopathol. 30: 258–264.Google Scholar
  14. Hatziloukas, E., and Panopoulos, N.J., 1992, Origin, structure, and regulation of argK, encoding the phaseolotoxinresistant ornithine carbamoyl-transferase in Pseudomonas syringae pv. phaseolicola, and functional expression of argK in transgenic tobacco, J. Bacteriol. 174: 5895–5909.PubMedGoogle Scholar
  15. Hoe, N.P., and Goguen, J.D., 1993, Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated, J. Bacteriol. 175: 7901–7909.PubMedGoogle Scholar
  16. Hugovieux-Cotte-Pattat, N., Dominguez, H., and Robert-Baudouy, J. 1992. Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937, J. Bacteriol. 174: 7807–7818.Google Scholar
  17. Hurme, R., Berndt, K.D., Namork, E., and Rhen, M., 1996, DNA binding exerted by a bacterial gene regulator with an extensive coiled coil domain, J. Biol. Chem. 271: 12626–12631.PubMedCrossRefGoogle Scholar
  18. Hurme, R., Berndt, K.D., Normark, S.J., and Rhen, M., 1997, A proteinaceous gene regulatory thermometer in Salmonella, Cell 90: 55–64.PubMedCrossRefGoogle Scholar
  19. Hurme, R., and Rhen, M., 1998, Temperature sensing in bacterial gene regulation — what it all boils down to, Mol. Microbiol. 30: 1–6.PubMedCrossRefGoogle Scholar
  20. Jin, S., Song, Y.N., Deng, W.Y., Gordon, M.P., and Nester, E.W., 1993, The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures, J. Bacteriol. 175: 6830–6835.PubMedGoogle Scholar
  21. Krumm, T., Bandemer, K., and Boland, W., 1995, Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) leucine-and isoleucine conjugates of 1-oxo-and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates ofjasmonic acid as intermediates in the octadecanoid signaling pathway, FEBS Lett. 377: 523–529.PubMedCrossRefGoogle Scholar
  22. Liyanage, H., Palmer, D.A., Ullrich, M., and Bender, C.L., 1995a, Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine, Appl. Environ. Microbiol. 61: 3843–3848.PubMedGoogle Scholar
  23. Liyanage, H., Penfold, C., Turner, J., and Bender, C.L., 1995b, Sequence, expression and transcriptional analysis of the coronafacate ligase-encoding gene required for coronatine biosynthesis by Pseudomonas syringae, Gene 153: 17–23.PubMedCrossRefGoogle Scholar
  24. Mitchell, R.E., 1976, Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola, Phytochem istry 15: 1941–1947.CrossRefGoogle Scholar
  25. Mitchell, R.E., 1982, Coronatine production by some phytopathogenic pseudomonads, Physiol. Plant Pathol. 220: 83–89.CrossRefGoogle Scholar
  26. Mittal, S. and Davis, K.R., 1995. Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae, Mol. Plant-Microbe Interact. 1: 165–171.CrossRefGoogle Scholar
  27. Palmer, D.A. and Bender, C.L., 1995, Ultrastructure of tomato leaf tissue treated with the pseudomonad phytotoxin coronatine and comparison with methyl jasmonate, Mol. Plant Microbe Interact 8: 683–692.CrossRefGoogle Scholar
  28. Patil, S.S., Hayward, A.C., and Emmons, R., 1974, An ultraviolet-induced nontoxigenic mutant of Pseudomonas phaseolicola of altered pathogenicity, Phytopathol. 64: 590–595.CrossRefGoogle Scholar
  29. Penaloza-Vazquez, A. and Bender, C.L., 1998, Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine, J. Bacteriol. 180: 6252–6259.PubMedGoogle Scholar
  30. Penfold, C.N., Bender, C.L., and Turner, J.G., 1996, Characterization of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine, Gene 183: 167–173.PubMedCrossRefGoogle Scholar
  31. Phadtare, S., Alsina, J., and Inouye, M., 1999, Cold-shock response and cold-shock proteins, Curr. Opin. Microbiol. 2: 175–180.PubMedCrossRefGoogle Scholar
  32. Rangaswamy, V., Jiralerspong, S., Parry, R., and Bender, C.L., 1998a, Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins, Proc. Natl. Acad. Sci. USA 95: 15469–15474.PubMedCrossRefGoogle Scholar
  33. Rangaswamy, V., Mitchell, R., Ullrich, M., and Bender, C.L., 19986, Analysis of genes involved in the synthesis of the polyketide phytotoxin coronatine, J. Bacteriol. 180: 3330–3338.Google Scholar
  34. Rangaswamy, V., Ullrich, M., Jones, W., Mitchell, R., Pany, R., Reynolds, P., and Bender, C.L., 1997, Expression and analysis of coronafacate ligase, a thermoregulated gene required for production of the phytotoxin coronatine in P. syringae, FEMSMicrobiol. Lett. 154: 65–72.PubMedCrossRefGoogle Scholar
  35. Rohde, B.H., Pohlack, B., and Ullrich, M.S, 1998, Occurrence of thermoregulation of genes involved in coronatine biosynthesis among various Pseudomonas syringae strains, J Basic Microbiol. 38: 41–50.PubMedCrossRefGoogle Scholar
  36. Rowley, K.B., Clements, D.E., Mandel, M., Humphreys, T., and Patil, S.S., 1993, Multiple copies ofa DNA sequence from Pseudomonas syringae pathovarphaseolicola abolish thermoregulation ofphaseolotoxin production, Mol. Microbiol. 8: 625–635.PubMedCrossRefGoogle Scholar
  37. Rowley, K.B., Xu, R., and Patil, S.S., 2000, Molecular analysis of thermoregulation of phaseolotoxin-resistant ornithine carbamoyltransferase (argK) from Pseudomonas syringae pv. phaseolicola, Mol. Plant-Microbe Interact. 13: 1071–1080.PubMedCrossRefGoogle Scholar
  38. Sakai, R., Nishiyama, K., Ichihara, A., Shiraishi, K., and Sakamura, S, 1979, Studies on the mechanism of physiological activity of coronatine: Effect of coronatine on cell wall extensibility and expansion of potato tuber tissue, Ann. Phytopathol. Soc. Japan 45: 645–653.CrossRefGoogle Scholar
  39. Sawada, H., Takeuchi, T., and Matsuda, I., 1997, Comparative analysis of Pseudomonas syringae pv. actinidae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S–23S rRNA intergenic spacer sequences, Appl. Environ. Microbiol. 63: 282–288.PubMedGoogle Scholar
  40. Smirnova, A., Aufhammer, S., and Ullrich, M. Unpublished results.Google Scholar
  41. Tamura, K., Zhu, Y., Sato, M., Teraoka, T., Hosokawa, D., and Watanabe, M., 1998, Roles of coronatine production by Pseudomonas syringae pv. maculicola for pathogenicity, Ann. Phytopathol. Soc. Jpn. 64: 299–302.CrossRefGoogle Scholar
  42. Ullrich, M., Bereswill, S., Völksch, B., Fritsche, W., and Geider, K., 1993, Molecular characterization of field isolates of Pseudomonas syringae pv. glycinea differing in coronatine production, J. Gen. Microbiol. 139: 1927–1937.PubMedCrossRefGoogle Scholar
  43. Ullrich, M., and Bender, C.L., 1994, The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases, J. Bacteriol. 176: 7574–7586.PubMedGoogle Scholar
  44. Ullrich, M., Guenzi, A.C., Mitchell, R.E., and Bender, C.L., 1994, Cloning and expression of genes required for coronamic acid (2-ethyl-I-aminocyclo-propane-1-carboxylic acid), an intermediate in the biosynthesis of the phytotoxin coronatine, Appl. Environ. Microbiol. 60: 2890–2897.PubMedGoogle Scholar
  45. Ullrich, M., Penaloza-Vazquez, A., Bailey, A.M., and Bender, C.L., 1995, A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine, J. Bacteriol. 177: 6160–6169.PubMedGoogle Scholar
  46. Ullrich, M.S., Schergaut, M., Boch, J., and Ullrich, B., 2000, Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea, Microbiol. 146: 2457–2468.Google Scholar
  47. Van Dijk, K., Fouts, D.E., Rehm, A.H., Hill, R.A., Collmer, A., and Alfano, J.R., 1999, The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type Ill) protein secretion system in a temperature-and pH-sensitive manner, J. Bacteriol. 181: 4790–4797.PubMedGoogle Scholar
  48. Wang, L., Bender, C., and Ullrich, M., 1999, The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the cmaABT promoter region in a temperature-dependent manner, Mol. Gen. Genet. 262: 250–260.PubMedCrossRefGoogle Scholar
  49. Wei, Z.M., Sneath, B.J., and Beer, S.V., 1992, Expression of Erwinia amylovora hrp genes in response to environmental stimuli, J. Bacteriol. 174: 1875–1882.PubMedGoogle Scholar
  50. Weiler, E.W., Kutchan, T.M., Gorba, T., Brodschelm, W., Niesel, U., and Bublitz, F., 1994, The Pseudomonas phytotoxin coronatine mimics octadecanoid signaling molecules of higher plants, FEBS Lett. 345: 9–13.PubMedCrossRefGoogle Scholar
  51. Weingart, H. and Ullrich, M. Unpublished results.Google Scholar
  52. White-Ziegler, C.A., Angus Hill, M.L., Braaten, B.A., van der Woude, M.W., and Low, D.A., 1998, Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor, Mol. Microbiol. 28: 1121–1137.PubMedCrossRefGoogle Scholar
  53. Wu, C., 1995, Heat shock transcription factors: structure and regulation, Annu. Rev. Cell Dev. Biol. 11: 441–469.PubMedCrossRefGoogle Scholar
  54. Yura, T., Nagai, H., and Mori, I-L, 1993, Regulation of heat-shock response in bacteria, Annu. Rev. Microbiol. 47: 321–350.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Matthias S. Ullrich
    • 1
  1. 1.Max-Planck-Institut für terrestrische MikrobiologieMarburgGermany

Personalised recommendations