Advances in Molecular Biology of Phytotoxin Production and Its Involvement in Plant Pathogenesis

  • R. Samiyappan
  • P. Balasubramanian
  • S. Babu
  • R. Nandakumar
  • V. Shanmugam
  • T. Raguchander
  • A. Ramanathan
Chapter

Abstract

Phytotoxins produced by disease causing microorganisms are key factors in the development of number of destructive diseases of crop plants. An expedient classification, almost half a century ago, of phytotoxins implicated in plant diseases placed them in three major groups, namely pathotoxins, phytotoxins and vivotoxins. However, this led to convoluted meanings, which necessitated simpler grouping of phytotoxins and eventual categorizing of them into either host-specific toxins or host nonspecific toxins. Host-specific toxins, which are regarded as the pathogenicity factors, affect only those plants that are hosts of the toxin-producing organisms, while the host non-specific toxins, which are toxic to both hosts and non-hosts of the pathogen alike, are considered to be the virulence factors (Graniti, 1991; Vidhyasekaran, 1995).

Keywords

Plant Pathol Toxin Production Alternaria Alternata Fusaric Acid Crown Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aducci, P., and Ballio, A., 1989, Mode of action of fusicoccin: the role of specific receptors, in: Phytotoxins and Plant Pathogenesis, A. Graniti, ed., Springer-Verlag, Berlin Heidelberg, pp. 143–150.CrossRefGoogle Scholar
  2. Akimistu, K., Hart, L.P., Walton, J.D., and Hollingsworth, R., 1992, Covalent binding sites ofvictorin in oat leaf tissues detected by anti-victorin polyclonal antibodies, Plant Physiol. 98: 121–126.CrossRefGoogle Scholar
  3. Avni, A., Anderson, J.A., Holland, N., Rochaix, J.D., Gromet-Elhanan, Z., and Edelman, M., 1992, Tentoxin sensitivity of chloroplasts determined by codon 83 of beta subunit of proton-ATPase, Science 257: 1245–1247.PubMedCrossRefGoogle Scholar
  4. Babu, S., Nandakumar, R., Sriram, S., Shanmugam, V., Balasubramanian, P., Raguchander, T., and Samiyappan, R., 2001, Relationship between phytotoxin production and sheath blight symptoms by some mutants of Rhizoctonia solani in rice, Acta Phytopathologica et Entomologica. Hungarica (In press)Google Scholar
  5. Bachmann, A.S., Matile, P., and Slusarenko, A.J., 1998, Inhibition of ornithine decarboxylase activity by phaseolotoxin: Implications for symptom production in halo blight of French bean, Physiol. Mol. Plant Pathol 53: 287–299CrossRefGoogle Scholar
  6. Balance, G.M., Lamari, L., Kowatsch, R., and Bernier, C.C., 1996, Cloning, expression and occurrence of the gene encoding the Ptr necrosis toxin from Pyrenophora tritici-repentis, Mol. Plant Pathol. Online Publication No. 1996 /1209.Google Scholar
  7. Ballio, A., 1991, Non-host-selective fungal phytotoxins: Biochemical aspects of their mode of action, Experientia 47: 783–790.CrossRefGoogle Scholar
  8. Barta, T.M., Kinscherf, T.G., Uchytil, T.F., and Willis, D.K., 1993, DNA sequence and transcriptional analysis of the tblA gene required for tabtoxin biosynthesis by Pseudomonas syringae, Appl. Environ. Microbiol 59: 458–466.PubMedGoogle Scholar
  9. Bender, C.L, Stone, H.E., Sims, J.J., and Cooksey, D.A., 1987, Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production, Physiol. Mol. Plant Pathol 30: 273–283.CrossRefGoogle Scholar
  10. Bender, C.L, Young, S.A., and Mitchell, R.E., 1991, Conservation ofplasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae, Appl. Environ. Microbiol 57: 993–999.PubMedGoogle Scholar
  11. Bender, C.L., 1999, Chlorosis-inducing phytotoxins produced by Pseudomonas syringae, European J. Plant Pathol 105 (1): 1–12.CrossRefGoogle Scholar
  12. Bender, C.L., Alarcon-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. and Mol. Biol. Rev 63: 266–292.Google Scholar
  13. Bender, C.L., Palmer, D., Penoloza-Vazquez, A., Rangasamy, V., and Ullrich, M., 1996, Biosynthesis of coronatine, a thermo-regulated phytotoxin produced by the phytopathgen Pseudomonas syringae, Archieves of Microbial. 166: 71–75.CrossRefGoogle Scholar
  14. Blein, J.P., Bourdil, J., Rossignol, M., and Scalia, R., 1988, Cercospora beticola toxin inhibits vanadate-sensitive H~ transport in corn root membrane vesicles, Plant Physiol. 88: 429–434.Google Scholar
  15. Brasier, C.M., 1987, The dynamics of fungal speciation, in: Evolutionary Biology of the Fungi, Cambridge University Press, Cambridge, pp. 231–260.Google Scholar
  16. Braun, C.J., Siedow., J.N., and Levings, C.S., 1990, Fungal toxins bind to the urf 13 protein in maize mitochondria and Escherichia coli, Plant cell 2 (2): 153–161.Google Scholar
  17. Braun, C.J., Siedow., J.N., Williams, M.E., and Levings III, C.S.,1989, Mutations in the maize mitochondria) T-urf-13 gene eliminate sensitivity to a fungal pathotoxin, Proc. Natl. Acad. Sci. USA 86: 4435–4439.Google Scholar
  18. Breswill, S., Bugert, P., Volksch, B., Ullrich, M., Bender, C.L., and Geider, K., 1994, Identification and relatedness of coronatine producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products, Appl. Environ. Microbiol 60: 2924–2930.Google Scholar
  19. Brettell, R.I S., Goddard, B.V.D., and Ingram, D.S., 1979, Selection of Tms-cytoplasm maize tissue cultures resistant to Drechslera maydis T-toxin, Maydica 24: 203–213.Google Scholar
  20. Briskin, D.P., 1990, The plasma membrane H’ATPase of higher plant cells: biochemistry and trasport functions. Biochem. Biophys. Acta 1019: 95–109.CrossRefGoogle Scholar
  21. Bronson, C.R., 1991, The genetics of phytotoxin production by plant pathogenic fungi, Experientia 47: 771–776. Bronson, C.R., and Scheffer, R.P., 1977, Heat and ageing induced tolerance of sorghum and oat tissues to host-selective toxins, Phytopathology 67: 1232–238.Google Scholar
  22. Bronson, C.R., Taga, R.M., and Yoder, O.C., 1990, Genetic control and distorted segregation of T-toxin production in field isolates of Cochliobolus heterostrophus, Phytopathology 80: 819–823.CrossRefGoogle Scholar
  23. Brosch, G., Ransom, R., Lechner, T., Walton, J.D., and Loidl, P., 1995, Inhibition of maize histone deacetylase by HC toxin, the host selective toxin of Cochliobolus carbonum, Plant Cell 7: 1941–1950.PubMedGoogle Scholar
  24. Budde, I.P., Rohde, B.H., Bender, C.L., and Ullrich, M.S., 1998, Growth phase and temperature influence promoter activity, transcript abundance and protein stability during biosynthesis of the Pseudomonas syringae phytotoxin coronatine, J. Bacterial 180: 1360–1367.Google Scholar
  25. Camoni, L., Iori, V., Marra, M., and Aducci, P., 2000, Phosphorylation–dependent inteaction between plant plasma membrane W ATPase and 14–3–3– proteins, J. Biol. Chem 14: 9919 – 9923.CrossRefGoogle Scholar
  26. Canada, S.R., and Dunkle, L.D., 1997, Polymorphic chromosomes bearing the Tox2 locus in Cochliobolus carbonum behave as homologs during meiosis, Appl. Environ. Microbiol 63: 996–1001.PubMedGoogle Scholar
  27. Che, F.S., Kasamo, K., Fukuchi, N., Isogai, A., and Suzuki, A., 1992, Bacterial phytotoxins, syringomycin, syringostatin and stringotoxin exert their effect on the plasma membrane WATPase partly by a detergent like action and partly by inhibition of the enzyme, Physiol. Plant 86: 518–524.CrossRefGoogle Scholar
  28. Ciuffetti, L.M., and Tuori, R.P., 1996, Analysis of the ToxA gene of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, Phytopathology 86: 91.Google Scholar
  29. Ciuffetti, L.M., and Tuori, R.P., 1999, Advances in the characterization of the Pyrenophora tritici-repentis–wheat interaction, Phytopathology 89: 444–449.PubMedCrossRefGoogle Scholar
  30. Ciuffetti, L.M., Tuori, R.P., and Gaventa, J.M., 1997, A single gene encodes a selective toxin causal to the development of tan spot of wheat, Plant Cell 9: 135–144.PubMedGoogle Scholar
  31. Clouse, S.D., and Gilchrist, D.G., 1986, Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f.sp. lycopersici and AAL-toxin, Phytopathology 77: 80–82.CrossRefGoogle Scholar
  32. Cocucci, S.D., Morgutti, S., Cocucci, M., and Ginani, L., 1983, Effects of ophiobolin A on potassium permeability, transmembrane electrical potential and proton extrusion in maize roots, Plant Science Letter 32: 9–16CrossRefGoogle Scholar
  33. Dainty, J., 1962, Ion transport and electrical potentials in plant cells, Annu. Rev. Plant Physiol 13: 397–402.Google Scholar
  34. D’Alton, A., and Etherton, B., 1984, Effect of fusaric acid on tomato root hair membrane potentials and ATP level, Plant Physiol. 74: 39–42.PubMedCrossRefGoogle Scholar
  35. Daly, J.M., 1981, Mechanisms of action, in: Toxin in Plant Disease, R.D. Durbin, ed., Academic Press, New York, pp. 331–394.Google Scholar
  36. Danko, S.J., Kono, Y., Daly, J.M., Suzuki, Y., Takeuchi, S., and McCrery, D.A., 1984. Structure and biological activity of a host-specific toxin produced by the fungal corn pathogen Phyllosticta maydis. Biochemistry 23: 759–766.CrossRefGoogle Scholar
  37. Daub, M.E., 1982, Cercosporin, a photosensitizing toxin from Cercospora species, Phytopathology 72: 370–374.CrossRefGoogle Scholar
  38. Daub, M.E., and Briggs, S.P., 1983, Changes in tobacco cell membrane composition and structure caused by cercosporin, Plant Physiol. 71: 763–766.PubMedCrossRefGoogle Scholar
  39. Daub, M.E., and Hangarter, R.P., 1983, Lignin induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin, Plant Physiol. 73: 855–857.PubMedCrossRefGoogle Scholar
  40. De Boer, A.H., Watson, B, A., and Cleland, R.E., 1989, Purification and identification of fusicoccin binding protein from oat root plasma membrane, Plant Physiol. 89: 250–259.Google Scholar
  41. Dewey, R.E., Levings III, C.S, and Timothy, D.H., 1986, Novel recombinations in the maize mitochondrial genome produce a unique transciptional unit in the Texas male-sterile cytoplasm, Cell 44: 439–449.Google Scholar
  42. Dewey, R.E., Siedow, J.N., Timothy, D.H., and Levings Ill, C.S., 1988, A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin, Science 239: 293–295.PubMedCrossRefGoogle Scholar
  43. Dewey, R.E., Timothy, D.H., and Levings III, C.S., 1987, A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize, Proc. Natl. Acad Sci. USA 84: 5374–5378.Google Scholar
  44. Dickman, M., B., 1995, The molecular biology of plant fungal interactions, Iowa State University Press, Ames, USA.Google Scholar
  45. DiGiorgio, D., Camoni, L., Mott, K.A., Takemoto, J.Y., and Ballio, A., 1996, Syringopeptins, Pseudomonas syringae pv. syringae phytotoxins resembled syringomycin in closing stomata, Plant Pathol. 45: 564–571.CrossRefGoogle Scholar
  46. Domsch, K.H., Gams, W., and Anderson, T.H., 1980, Compendium of Soil Fungi, Acadmic press, New York.Google Scholar
  47. Dunkle, L.D., and Macko, V., 1995, Peritoxins and their effects on sorghum, Can. J. Bot 73: 444–452.CrossRefGoogle Scholar
  48. Durbin, R.D., 1991, Bacterial phytotoxins: Mechanisms of action, Experientia 47: 776–783.CrossRefGoogle Scholar
  49. Durbin. R.D., and Uchytil, T.F., 1977, A survey of plant insensitivity to tentoxin, Phytopathology 67: 603.Google Scholar
  50. Eggink, G., deWaard, P., and Huijberts, G.N.M., 1992, The role of fatty acid biosyhthesis and degradation in the supply of substrates for poly(3-hydroxyalkanoate) formation in Pseudomonas putida, FEMS Microbiol. Reviews 103: 159–164.CrossRefGoogle Scholar
  51. Ehrenshaft, M., and Upchurch, R.G., 1993, Host protein(s) induces accumulation of the toxin cercosporin and mRNA in a phytopathogenic strain of Cercospora kikuchif, Physiol. Mol. Plant Pathol 43: 95–107.CrossRefGoogle Scholar
  52. Engst, K., and Shaw, P.D., 1992, Identification of a lysA–like gene required for tabtoxin biosynthesis and pathogenicity in Pseudomonas syringae pv. tabaci strain PTBR2.024, Mol. Plant-Microbe Interact 5: 322–329.PubMedCrossRefGoogle Scholar
  53. Faris, J.D., Anderson, J.A., Francl, L.J., and Jordal, J.G., 1996, Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis, Phytopathology 86: 459–463.CrossRefGoogle Scholar
  54. Fault, J.L., and Gay, J.L., 1983, Phospholipase activity in Erysiphae pisi, Physiol. Plant Pathol 22: 55–63.Google Scholar
  55. Foote, C.S., 1976, Photosensitized oxidation and singletoxygen: Consequences in biological systems, in: Free Radicals in Biology, W.A. Pryor, ed., Academic Press, New York, pp. 85–113.Google Scholar
  56. Fuglsang, A.T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O.N., Aducci, P., and Palmgren, M.G. 1999, Binding of 14–3–3 protein top the plasma membrane H’ atpASE aha2 involves the three C–terminal resiudes Tyr966 —Thr–Val and requires phosphorylation of Thr947, J. Biot. Chem 274: 37774 – 36780.Google Scholar
  57. Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., Takemoto, J.Y., and Suzuki, A., 1992, Structure and stereochemistry of three phytotoxins, syringomycin, syringotoxin and syringostatin, produced by Pseudomonas syringae pv. syringae, J. Chem. Society of Perkin Transactions 1 (7): 875–880.CrossRefGoogle Scholar
  58. Gardner, J.M., Mansour, I.S., and Scheffer, R.P., 1972, Effects of the host specific toxin ofPericonia circinata on some properties of sorghum plasma membranes, Physiol. Plant Pathol 2: 197–252.CrossRefGoogle Scholar
  59. Gilchrist, D.G., and Grogan, R.G., 1976, Production and nature of a host-specific toxin from Alternaria alternata f.sp. lycopersici, Phytopathology 66: 165–171.CrossRefGoogle Scholar
  60. Gilchrist, D.G., Wang, H., and Bostock, R.M., 1995, Sphingosine-related mycotoxins in plant and animal diseases, Can. J Bot 73: 459–467.CrossRefGoogle Scholar
  61. Goyer, C., Vachon, J., and Beaulieu, C., 1998, Pathogenicity of Streptomyces scabies mutants altered in thaxtomin A production, Phytopathology 88: 442–445.PubMedCrossRefGoogle Scholar
  62. Graniti, A., 1991, Phytotoxins and their involvements in plant diseases, Experientia 47: 751–755.CrossRefGoogle Scholar
  63. Grgurina, 1., Barca, A., Cervigni, S., Gallo, M., Scaloni, A., and Pucci, P., 1993, Relevance of chlorine-substituent for the antifungal activity of syringomycin and syringotoxin, metabolites of phytopathogenic bacterium Pseudomonas syringae pv. syringae, Experientia 50: 130–133.Google Scholar
  64. Gross, M.L., McCrery, D., Crow, F., Tomerk, B., Pope, M.R., Ciuffetti, L.M., Knoche, H.W., Daly, J.M., and Dunkle, L.D., 1982, The structure of the toxin from Helminthosporium carbonum, Tetra. Lett 25: 5381–5384.Google Scholar
  65. Guenzi, E., Galli, G., Grgurina, I., Gross, D, C., and Grandi, G., 1998, Characterization of the syringomycin synthetase gene cluser: a link between prokaryotic and eukaryotic peptide synthetases, J. Biot. Chem 273: 32857–32863.Google Scholar
  66. Hamid, A.H., Ayers, J.E., and Hill, R.R., 1982, The inheritance of resistance in corn to Cochliobolus carbonum race 3, Phytopathology72: 1173–1177.Google Scholar
  67. Hardison, L., and Ciuffetti, L.M., 1998, Identification of the site of action of Ptr ToxA in wheat, in: International Congress of Plant Pathology, Edinburgh, Scotland, 1998.Google Scholar
  68. Hartman, P.E., Dixon, W, J., Dahl, T.A., and Daub, M.E., 1988, Multiple modes of photodynamic action by cercosporin, Photchem. Photobiol 47: 699–703.Google Scholar
  69. Hatziloukas, E., Panopoulos, N.J., Delis, S., Pronsen, D.E., and Schaad, N.W., 1995, An open reading frame in the approximately 28-kb tox-argK gene cluster encodes a polypeptide with homology to fatty acid desaturases, Gene 166: 83–87.PubMedCrossRefGoogle Scholar
  70. Hohn, T.M., and Desjardins, A.E., 1992, Isolation and gene disruption of the ToxS gene encoding trichodiene synthase in Gibberella pulicaris, Mol. Plant-Microbe Interact 5: 249–256.PubMedCrossRefGoogle Scholar
  71. Hoppe, H.H., and Heitefuss, R., 1975, Permeability and membrane lipid metabolism of Phaseolus vulgaris infected with Uromyces phaseoli. IV Phospholipids and phospholipid fatty acids in healthy and rust infected bean leaves resistant and susceptible to Uromyces phaseoli, Physiol. Plant Pathol 5: 263–270.CrossRefGoogle Scholar
  72. Hu, N., Mills, D.A., Huchzermeyer, B., and Richter, M.L., 1993, Inhibition of tentoxin of cooperativity among nucleotide binding sites on chloroplast coupling factor, J. Biot. Chem 268: 8540.Google Scholar
  73. Huang, J., Lee., S.H., Lin, C., Medici, R., Hack, E., and Myers, A.M., 1990, Expression in the yeast of T-URF 13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasmspecific fungal toxins, EMBO Journal 9: 339–347.Google Scholar
  74. Jenns, A.E., Daub, M.E., and Upchurach, R.G., 1989, Regulation of cercosporin accumulation in culture by medium and tempertature manipulation, Phytopathology 79: 213–219.CrossRefGoogle Scholar
  75. Johal, G.S., and Briggs, S.P., 1992, Reductase activity encoded by the HMI disease resistance gene of maize, Science 258: 985–987.PubMedCrossRefGoogle Scholar
  76. Johansson, F., Sommarin, M., and Larsson, C., 1993, Fusicoccin activates the plasma membrane H`ATPase by a mechanism involving the C-terminal inhibitory domain, The Plant Cell 5: 321–327.PubMedGoogle Scholar
  77. Jones, W, T., Harvey, D., Jones, S.D., Sutherland, P.W., Nicol, M.J., Sergejew, N., Debnam, P.M., Cranshaw, N., and Reynold, P.H.S., 1995, Interaction between the phytotoxin dothistromin and Pinus radiata embryos, Phytopathology 85: 1099–1104.CrossRefGoogle Scholar
  78. Kawai, M., Rich, D.H., and Walton, J.D., 1983, The structure and confirmation of HC-toxin, BioChem. and Biophysical Research Communications 111: 398–403.CrossRefGoogle Scholar
  79. Kenfield, D.S., and Strobel, G.A., 1981, Selective modulation of helminthiosporoside binding by alpha-galactosidebinding proteins from sugarcane clones susceptible and resistant to Helminthosporium sacchari, Physiol. Plant Pathol 19: 145–152.Google Scholar
  80. Kenyon, J., and Turner, J.G., 1990, Physiological changes in Nicotiana tabaccum leaves during development of chlorosis caused by coronatine, Physiol. Mol. Plant Pathol 37: 463–477.CrossRefGoogle Scholar
  81. Kim, S. D., and Knoche, H.W., 1987, Essentiality of the ketone function for toxicity of the host-selective toxin produced by Helminthosporium carbonum, Physiol. Mol. Plant Pathol 30: 433–440.CrossRefGoogle Scholar
  82. Kinscherf, T.G., Coleman, R.H., Barta, T.M., and Willis, D.K., 1991, Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae, J. Bacteriol I73 (13): 4124–4132.Google Scholar
  83. Kleinkauf, H., and vonDohren, H., 1996, A non-ribosomal system of peptide biosynthesis, European J. Biochem 236: 335–351.CrossRefGoogle Scholar
  84. Knogge, W., 1996, Molecular basis of specificity in host/fungus interactions, European Journal of Plant Pathology 102 (9): 807–816.CrossRefGoogle Scholar
  85. Kodama, M., Suzuki, A., Otani, H., Kohmoto, K., and Nishimura, S., 1990, Purification and bioassay of host-selective AT-toxin from Alternaria alternata causing brown spot of tobacco, Ann. Phytopathol. Soc. Jpn 56: 628–636.CrossRefGoogle Scholar
  86. Kohmoto, K., Akimitsu, K., and Otani, H., 1991, Correlation of resistance and susceptibility of citrus to Alternaria alternata with sensitivity to the host-specific toxins, Phytopathology 81: 719–722.CrossRefGoogle Scholar
  87. Kohmoto, K., and Otani, H., 1991, Host-recognition by toxigenic plant pathogens, Experientia 47: 755–764.PubMedCrossRefGoogle Scholar
  88. Kohmoto, K., Kondoh,Y., Kohguchi, T., Otani, H., Nishimura, S., and Scheffer, R.P., 1984, Ultrastructural changes in host leaf cells caused by host-selective toxin of Alternaria alternata from rough melon, Can. J. Bot 62: 2485–2492.CrossRefGoogle Scholar
  89. Kono, Y., and Daly, J.M., 1979, Characterization of host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm, Bioorg. Biochem 8: 391–397.CrossRefGoogle Scholar
  90. Kono,Y., Gardner, J.M., Suzuki, Y., and Takeuchi, S., 1986, Studies on host selective toxins produced by a pathotype of Alternaria citri causing brown spot disease of mandarins, Agric. Biol. Chem 50: 1597–1606.CrossRefGoogle Scholar
  91. Kuo, M.S., and Scheffer, R.P., 1964, Evaluation of fusaric acid as a factor in the development of Fusarium wilt, Phytopathology 54: 1041–1044.Google Scholar
  92. Kwon, C.Y., Ramussen, J.B., and Meinhardt, S.W., 1998, Activity of Ptr ToxA from Pyrenophora tritici-repentis requires host metabolism, Physiol. Mol. Plant Pathol 52: 201–212.CrossRefGoogle Scholar
  93. Lamari, L., and Bernier, C.C., 1989, Toxin of Pyrenophora tritici-repentis: Host-specificity, significance in disease, and inheritance of host reaction, Phytopathology 79: 740–744.CrossRefGoogle Scholar
  94. Lamari, L., and Bernier, C.C., 1991, Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis, Phytopathology 81: 1092–1095.CrossRefGoogle Scholar
  95. Leach, J., Lang, B.R., and Yoder, O.C., 1982, Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus, J. Gen. Microbiol 128: 1719–1729.Google Scholar
  96. Lee, S.S., Kawakita, K., Tsuge, T., and Doke, N., 1992, Stimulation of phospholipase A2 activity in strawberry cells treated with AF-toxin I produced by Alternaria alternata strawberry pathotype, Physiol. Mol. Plant Pathol 41: 283–294.CrossRefGoogle Scholar
  97. Leung, P.C., Taylor, W.R., Wang, J.H., and Tipton, C.L., 1984, Ophiobolin A, a natural product inhibitor of calmodulin, J. Biol. Chem. 259: 2742–2747.PubMedGoogle Scholar
  98. Leung, P.C., Taylor. W. R., Wang, J.H., and Tipton, C.L., 1985, Role of calmodulin inhibition in the mode of action of ophiobolin A, Plant Physiol 77: 303–308.PubMedCrossRefGoogle Scholar
  99. Levings III, C.S., Rhoads, D.M., and Siedow, J.N., 1995, Molecular interactions of Bipolaris maydis T-toxin and maize, Can. J. Bot. 73: 483–489.CrossRefGoogle Scholar
  100. Levings, C.S., and Siedow, J.N., 1992, Molecular basis of disease susceptibility in the Texas cytoplasm of maize, Plant Mol. Biol. 19: 135–147.PubMedCrossRefGoogle Scholar
  101. Liesch, J.M., Sweely, C.C., Staffeld, G.D., Anderson, M.S., Webber, D.J., and Sheffer, R.P., 1982, structure of HC-toxin, a cyclic tetrapeptide from Helminthosporium carbonum, Tetrahedron 38: 45–48.Google Scholar
  102. Liu, L., and Shaw, P.D., 1997, Characterization of dapB a gene required by Pseudomonas syrinage pv. Tabaci BR2.024 for lysine and tabtoxinine beta lactam biosynthesis, J. Bacteriol 179: 507–513.PubMedGoogle Scholar
  103. Livingston, R.S., and Scheffer, R.P., 1984, Selective toxins and analogs produced by Helminthosporium sacchari, Plant Physiol. 76: 96–102.PubMedCrossRefGoogle Scholar
  104. Liyanage, H., Palmer, D.A., Ullrich, M., and Bender, C.L., 1995, Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine, Appl. Environ. Microbiol 61: 3843–3848.PubMedGoogle Scholar
  105. Lu, S., Lyngholm, L., Yang, G., Bronson, C., Yoder, O.C., and Turgeon, B.G., 1994, Tagged mutations at the Toxl locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration, Proc. Natl. Acad. Sci. USA 91: 12649–12653.PubMedCrossRefGoogle Scholar
  106. Lukens, J.H., and Durbin, R.D., 1985, Tagetitoxin affects plastid development in seedling leaves of wheat, Planta 165: 311–321.CrossRefGoogle Scholar
  107. Macko, V., Wolpert, T.J., Acklin, W., and Arigoni, D., 1989, Biological activities of structural variants of host-selective toxins from Cochliobolus victorias, in: Phytotoxins and Plant Pathogenesis, A. Graniti, ed., Springer-Verlag, Berlin, pp. 31–41.CrossRefGoogle Scholar
  108. Macri, F., Dell’antone, P., and Vianello, A., 1983, ATP-dependent proton uptake inhibited by Cercospora beticola toxin in pea stem microsomal vesicles, Plant Cell Environ. 6: 555–558.CrossRefGoogle Scholar
  109. Magro, P., Marciano, P., and Di Lenna, P., 1984, Oxalic acid production and its role in pathogenesis of Scletotinia sclerotiorum, FEMSMicrobiol. Lett 24: 9–12.CrossRefGoogle Scholar
  110. Markisch, U., and Reuter, G., 1990, Biosynthesis of homoarginine and ornithine as precursors of the phytoeffector phaseolotoxin by the amidinotransfer from arginine to lysine catalyzed by an amidinotransferase in Pseudomonas syringae pv. phaseolicola, J. Basic Microbiol 30: 425–433.CrossRefGoogle Scholar
  111. Marre, E., 1979, Fusicoccin: a tool in plant physiology, Annu. Rev. Plant Physiol 30: 273–288.CrossRefGoogle Scholar
  112. Marre, E., 1980, Mechanism of action of phytotoxins affecting plasmalemma functions, Progress Phytochem. 6: 253–283.Google Scholar
  113. Marre, E., Vergani, P., and Albergoni, F.G., 1993, Relationship between fusaric acid uptake and its binding to cell structures by leaves ofEgeria densa and its toxic effects on membrane permeability and respiration, Physiol. Mol. Plant Pathol 42: 141–157.CrossRefGoogle Scholar
  114. Mayama, S., and Tani, T., 1986, The purification of victorin and its phytoalexin elicitor activity in oat leaves, Physiol. Mol. Plant Pathol 29: 1–18.CrossRefGoogle Scholar
  115. Mayama, S., Bordin, A.P.A., Morikawa, T., Tanpo, H., and Kato, H., 1995, Association ofavenalumin accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat lines carrying the Pc-2 gene, Physiol. Mol. Plant Pathol 46: 263–274.CrossRefGoogle Scholar
  116. Meeley, R.B., and Walton, J.D., 1993, Molecular biology and biochemistry of Hm I, a maize gene for fungal resistance, in: Advances in Molecular Genetics of Plant-Microbe Interactions, E.W. Nester and D.P.S. Verma, eds., Kluwer Academic Publishers, The Netherlands, Vol. 2, pp. 463–475.Google Scholar
  117. Mino,Y., Matsushita,Y., and Sakai, R., 1987, Effect of coronatine on stomatal opening in leaves of broadbean and italian ryegrass, Ann. Phytopathol. Soc. Jpn 53: 53–55.CrossRefGoogle Scholar
  118. Mitchell, R.E., 1982, Coronatine production by some phytopathogenic pseudomonads, Physiol. Plant Pathol 20: 83–89.CrossRefGoogle Scholar
  119. Mitchell, R.E., 1985, Norcoronatine and N-coronafacoyl-L-valine, phytotoxin analogue of coronatine produced by a strain of Pseudomonas syringae pv. glycinea, Phytochemistry 24: 1485–1488.CrossRefGoogle Scholar
  120. Mitchell, R.E., 1991, Implications of toxins in the ecology and evolution of plant pathogenic microorganisms: Bacteria, Experientia 47: 791–803.PubMedCrossRefGoogle Scholar
  121. Mitchell, R.E., and Bieleski, R, L., 1977, Involvement of phaseolotoxin in halo blight of beans. Transport and conversion to functional toxin, Plant Physiol 60: 723–729.Google Scholar
  122. Mitchell, R.E., and Frey, E.J., 1988, Rhizobitoxin production by Pseudomonas syringae pv. andropogonis strains, and the implications to plant disease, Physiol. Mol. Plant Pathol 32: 335–341.CrossRefGoogle Scholar
  123. Mitchell, R.E., Hale, C.N., and Shanks, J.C., 1983, Production of different pathogenic symptoms and different toxins by strains of Pseudomonas syingae pv. tomato not distinguishable by gel immuno diffusion assay, Physiol. Plant Pathol 23: 315–322.CrossRefGoogle Scholar
  124. Mittal, S.M., and Davis, K.R., 1995, Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato, Mol. Plant-Microbe Interact 8: 165–171.PubMedCrossRefGoogle Scholar
  125. Moore, R.A., Niemczura, W.P., Kwok, O.C.H., and Patil, S.S., 1984, Inhibitors of ornithine carbamoyltransferase from Pseudomonas syringae pv. phaseolicola, Tetrahedron Lett. 25: 3931–3934.CrossRefGoogle Scholar
  126. Morisseau, C., Ward, B.L., Gilchrist, D.G., and Hammock, B.D., 1999, Multiple epoxide hydrolases in Alternaria alternata f.sp. lycopersici and their relationship to medium composition and host-specific toxin production, Appl. Environ. Microbiol 65: 2388–2395.PubMedGoogle Scholar
  127. Multani, D.S., Meeley, R.B., Paterson, A.H., Gray, J., Briggs, S.P., and Johal, G.S., 1998, Plant-pathogen microevolution: Molecular basis for the origin of a fungal disease in maize, Proc. Natl. Acad. Sci. USA 95: 1686–1691.PubMedCrossRefGoogle Scholar
  128. Nakashima, T., Ueno, T., and Fukami, H., 1982, Structure elucidation of AK-toxins, host-specific phytotoxic metabolites produced by Alternaria kikuchiana, Tetrahedron Lett. 23: 4469–4472.CrossRefGoogle Scholar
  129. Nakashima, T., Ueno, T., Fukami, H., Taga, T., Masuda, H., Osaki, K., Otani, H., Kohmoto, K., and Nishimura, S., 1985, Isolation and structure of AK-toxin I and II, host-specific phytotoxic metabolites produced byAlternaira alternata Japanese pear pathotype, Agric. Biol. Biochem 49: 807–815.CrossRefGoogle Scholar
  130. Namiki, F., Okamoto, M., Katou, K., Yamamoto, M., Nishimura, S., Nakatsuka, S., Goto, T., Kohmoto, K., and Otani, H., 1986, Studies on host specific AF-toxins produced by Alternaria alternata strawberry pathotype causing Alternaria black spot of strawberry 5. Effect of toxins on membrane potential of susceptible plants as assayed by electrophysiological method, Ann. Phytopathol. Soc. Jpn 52: 610–619.CrossRefGoogle Scholar
  131. Navarre, D.A., and Wolpert, T.J., 1995, Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin, Plant Cell 7: 463–471.PubMedGoogle Scholar
  132. Nishimura, S., and Kohmoto, K., 1983, Host specific toxins and chemical structures from Alternaria species, Annu. Rev. Phytopath 21: 87–116.CrossRefGoogle Scholar
  133. Okuno, T., Ishita,Y., Sawai, K., and Matsumoto, T., 1974, Characterization of alternariolide, a host-specfic toxin produced by Alternaria mali Roberts, Chem. Lett 635–638.Google Scholar
  134. Olbe, M., Sommarin, M., Gustafsson, M., and Lundborg, T., 1995, Effect of the fungal pathogen Bipolaris sorokiniana toxin prehelminthosporol on barley root plasma membrane vesicles, Plant Pathol. 44: 625–635.CrossRefGoogle Scholar
  135. Olivari, C., Albumi, C., Pugliarello, M.C., and DeMichelis, M, I., 2000, Phenylarsine oxide inhibits the fusicoccin induced activation of plasma membrane FrATPase, Plant Physiol. 122: 463–470.Google Scholar
  136. Otani, H., Kodama, M., and Kohmoto, K., 1994, Specific and non-specific actions of AK-toxins and AL-toxins, in: Host-Specific Toxin: Biosynthesis, Receptor and Mol. Biology, K. Kohmoto and O.C. Yoder, eds., Tottori University Press, Tottori, pp. 109–118.Google Scholar
  137. Otani, H., and Kohmoto, K., 1995, Role of host-specific toxin in host recognition by pathogen. Nippon Nogeik Kaishi, Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry 69 (2): 178–181.Google Scholar
  138. Otani, H., Kohmoto, K., and Kodama, M., 1994, Alternaria toxins and their effects on host plants, Can. J. Bot 73: 453–458.Google Scholar
  139. Otani, H., Kohmoto, K., and Nishimura, S., 1989, Action sites for AK-toxins produced by the Japanese pear pathotype of Alternaria alternata, in: Host-Specific Toxins: Recognitions and Specificity Factors in Plant Disease, K. Kohmoto and R.D Durbin, eds., Tottori University, Japan, p. 107.Google Scholar
  140. Otani, H., Kohnobe, A., Kodama, M., and Kohmoto, K., 1998, Production of a host-specific toxin by germinating spores of Alternaria brassicicola, Physiol. Mol. Plant Pathol 52: 285–295.CrossRefGoogle Scholar
  141. Otani, H., Morikawa, M., Nishimura, S., and Kohmoto, K., 1977, Nature of specific susceptibility to Alternaria kikuchiana in Nijisseiki cultivar among Japanese pears VIII. Effects of other cations on losses of K’ after exposure to AK-toxin, Ann. Phytopathol. Soc. Jpn 43: 562–568.CrossRefGoogle Scholar
  142. Palmer, D.A., and Bender, C.L., 1995, Ultra structure of tomato leaf tissue treated with the Pseudomonad phytotoxin coronatine and comparison with methyl jasmonate, Mol. Plant-Microbe Interact 8: 683–692.CrossRefGoogle Scholar
  143. Panaccione, D.G., Scot-Craig, J.S., Pocard, J.A., and Walton, J.D., 1992, A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum in maize, Proc. Natl. Acad. Sci. USA 89: 6590–6594.PubMedCrossRefGoogle Scholar
  144. Panopoulos, N.J., Walton, J.D., and Willis, D.K., 1984, Genetic and biochemical basis of virulence in plant pathogens, in: Genes Involved in Microbe-plant Interactions, Springer-Verlag, Vienna, Austria, pp. 339–373.Google Scholar
  145. Park, P., Ohno, T., Nishimura, S., Kohmoto, K., and Otani, H., 1987, Leakage of sodium ions from plasma membrane modification, assoicated with permeability change, in host cells treated with a host-specific toxins from a Japanese pear pathotype of Alternaria alternata, Can. J Bot 65: 330–339.CrossRefGoogle Scholar
  146. Parry, R.J., Lin, M.T., Walker, A.E., and Mhaskar, S., 1991, Biosynthesis of coronatine: investigations of the biosynthesis ofcoronamic acid, J. American Chem. Society 113: 1849–1850.CrossRefGoogle Scholar
  147. Parry, R.J., Mhaskar, S., Lin, M.T., Walker, A.E., and Mafoti, R., 1994, Investigations of the biosynthesis of the phytotoxin coronatine, Can. J. Chem 72: 86–99.CrossRefGoogle Scholar
  148. Patil, S.S., Hayward, A.C., and Emmons, R., 1974, An ultraviolet-induced nontoxigenic mutant of Pseudomonas phaseolicola of altered pathogenicity, Phytopathology 64: 590–595.CrossRefGoogle Scholar
  149. Pavlovkin, J., Novacky, A., and Ullrich-Eberius, C.l., 1986, Membrane potential changes during bacteria-induced hypersensitive reaction, Physiol. Plant Pathol 28: 125–135.CrossRefGoogle Scholar
  150. Peet, R.C., Lindgren, P.B., Willis, D.K., and Panopoulos, N.J., 1986, Identification and cloning of genes involved in phaseolotoxin production by Pseudomonas syringae pv. phaseolicola, J. Bacteriol 166: 1096–1105.PubMedGoogle Scholar
  151. Penfold, C.N., Bender, C.L, and Turner, J.G., 1996, Characterization of genes involved in biosynthesis of coronafacic acid, the polyketide component of the phytotoxin coronatine, Gene 183: 167–173.PubMedCrossRefGoogle Scholar
  152. Pitkin, J.W., Nikolskava, A., Ahn, J.H., and Walton, J.D., 2000, Reduced virulence caused by meiotic instability of the TOX2 chromosome of the maize pathogen Cochliobolus carbonum, Mol. Plant-Microbe Interact 13: 80–87.PubMedCrossRefGoogle Scholar
  153. Pitkin, J.W., Panaccione, D.G., and Walton,.11D., 1996, A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum, Microbiology 142: 1557–1565.PubMedCrossRefGoogle Scholar
  154. Pitt, D., and Kaile, A., 1990, Transduction of calcium signal with special reference to Cat’-induced conidiation in Penicillium notatum, in: Biochemistry of Ctll Walls and Membranes in Fungi, J. Kuhn, A.P.J. Trinci, M.J. Jung, M.W. Goosey and L.G. Copping, eds., Springer-Verlag, Berlin, pp. 283–298.CrossRefGoogle Scholar
  155. Popham, P.L., Pike, S.M., and Novacky, A., 1995, The effect of harpin from Erwinia amylovora on the plasmalemma of suspension-cultured tobacco cells, Physiol. Mol. Plant Pathol. 47: 39–50.CrossRefGoogle Scholar
  156. Ramm, K., Ramm, M., Liebermann, B., and Reuter, G., 1994, Studies of the biosynthesis oftentoxin by Alternaria alternata, Microbiology 140: 3257–3266.PubMedCrossRefGoogle Scholar
  157. Rangasamy, V., Mitchell, R., Ullrich, M., and Bender, C.L., 1998, Analysis of genes involved in the synthesis of the polyketide phytotoxin coronatine, J. Bacterial. 180: 3330–3338.Google Scholar
  158. Ransom, R.F., Wilder, J., and Dunkle, L.D., 1994, Purification and distribution ofpathotoxin-enhanced proteins in sorghum, Physiol. Mol. Plant Pathol 45: 385–395.CrossRefGoogle Scholar
  159. Reinhold, L., and Kaplan, A.,1984, Membrane transport of sugars and aminoacids, Annu. Rev. Plant Physiol 87: 649–674.Google Scholar
  160. Rich, J.J., Hirano, S.S., and Willis, D.K., 1992, Pathovar specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation, Appl. Environ. Microbiol. 58: 1440–1446.PubMedGoogle Scholar
  161. Roberts, M, R., and Bowles, D.J., 1999, Fusicoccin, 14–3–3 proteins, and defense responses in tomato plants, Plant Physiol. 119: 1243 – 1250.PubMedCrossRefGoogle Scholar
  162. Robeson, D.J., and Strobel, G.A. 1984, Zinniol induces chlorophyll retention in barley leaves: the selective action of a non-host-specific phytotoxin, Phytochemistry 23: 1597–1599.CrossRefGoogle Scholar
  163. Rudolph, K., 1976, Non-specific toxins, in: Physiol. Plant Pathol. Encyclopedia Plant Physiol, R. Heitefuss and P.H. Williams, eds., Springer-Verlag, Berlin, pp. 270–315.CrossRefGoogle Scholar
  164. Sakai, R., Akima, M., Mino,Y., and Emami-Savavi, R., 1984, Effect of coronatine on membrane bound adenosine triphosphatase, Ann. Phytopathol. Soc. Jpn 50: 653–655.Google Scholar
  165. Sakai, R., Nishyama, K., Ichihara, A., Shiraishi, K., and Sakamura, S., 1979, Studies on the mechanism of physiological activity of coronatine. Effect of coronatine on cell wall extensibility and expansion of potato tuber tissue, Ann. Phytopathol. Soc. Jpn 45: 569–602.Google Scholar
  166. Sato, M., Nishiyama, K., and Shirata, A., 1983, Involvement of plasmid DNA in the productivity of coronatine by Pseudomonas syringae pv. atropurpurea, Ann. Phytopathol. Soc. Jpn. 49: 522–528.CrossRefGoogle Scholar
  167. Scheffer, R.P., 1989, Ecological consequences of toxin production by Cochliobolus and related fungi, in: Phytotoxins and Plant Pathogenesis, A. Graniti, ed., Springer-Verlag, Berlin, pp. 285–300.CrossRefGoogle Scholar
  168. Scheffer, R.P., 1991, Role of toxins in evolution and ecology of plant pathogenic fungi, Experientia 47: 804–811.CrossRefGoogle Scholar
  169. Scheffer, R.P., and Livingston, R.S., 1980, Sensitivity of sugarcane clones to toxin from Helminthosporium sacchari as determined by electrolyte leakage, Phytopathology 70: 400–404.CrossRefGoogle Scholar
  170. Scheffer, R.P., and Livingston, R.S., 1984, Host-selective toxins and their role in plant diseases, Science 6: 17–21.CrossRefGoogle Scholar
  171. Scheffer, R.P., Nelson, R.R., and Ullstrup, A.J., 1967, Inheritance of toxin production and pathogenicity in Cochliobolus carbonum and Cochliobolus victoriae, Phytopathology 57: 1288–1291.Google Scholar
  172. Schroter, H., and Novacky, A.,1985, Effect of Helminthosporium sacchari toxins on cell membrane potential of susceptible sugarcane, Physiol. Plant Pathol. 26: 165–174.CrossRefGoogle Scholar
  173. Sege, A., Bachmann, R.C., Ballio, A., Bosa, F., Grgurina, I., lacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomyc ins A1, E and G., FEBSIett 255: 27–31.Google Scholar
  174. Shimomura, N., Park, P., Otani, H., Kodama, M., Kohmoto, K., and Ohno, T., 1993, Leakage sites ofelectolytes from susceptible apple leaf cells treated with AM-toxin I ofAlternaria alternata apple pathotype, Ann. Phytopathol. Soc. Jpn 59: 563–567.CrossRefGoogle Scholar
  175. Singh, P., Park, P., Bugiani, R., Cavanni, P., Nakajima, H., Kodama, M., Otani, H., and Kohmoto, K., 2000, Effects of host-selective SV-toxin from Stemphylium vesicarium, the cause of brown spot of European pear plants, on ultra structure of leaf cells, J. Phytopathology 148: 87–93.CrossRefGoogle Scholar
  176. Sorensen, K.N., Kim, K.H., and Takemoto, J.Y., 1996, In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsipeptides produced by Pseudomonas syringae pv. syringae, Antimicrob. Agents Chem other 40: 2710–2713.Google Scholar
  177. Spanswick, R, M., 1981, Electrogenic ion pumps, Annu. Rev. Plant Physiol 32: 267–289.CrossRefGoogle Scholar
  178. Sriram, S., Raguchander, T., Vidhyasekaran, P, Muthukrishnan, S., and Samiyappan, R., 1997, Genetic relatedness with special reference to virulence among the isolates of Rhizoctonia solani causing sheath blight in rice, J. Plant Dis. Protect 104: 260–271.Google Scholar
  179. Stachelhaus, T., and Marahiel, M., 1995, Molecular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis, FEMS Microbial. Lett 125: 3–14.CrossRefGoogle Scholar
  180. Strobel, G.A., 1982, Phytotoxins, Annu. Rev. Biochem 51: 309–333.PubMedCrossRefGoogle Scholar
  181. Strobel, G.A., and Hess, W.M., 1974, Evidence for the presence of the toxins-binding protein on the plasma membrane of sugarcane cells, Proc. Natl. Acad. Sci. USA 71: 1413–1417.PubMedCrossRefGoogle Scholar
  182. Strobel, G.A., Steiner, G.W., and Byther, R., 1975, Deficiency of toxin-binding protein in mutants of sugarcane clone H54–775 as it relates to disease resistance, BioChem. Genetics 13: 557–565.CrossRefGoogle Scholar
  183. Tai, K.A., and Pak, C.L., 1998, Identification of the binding and inhibition sites in the calmodulin molecule for ophiobolin A by site-directed mutagenesis, Plant Physiol. 118: 965–973.CrossRefGoogle Scholar
  184. Tamura, K., Takikawa, Y., Tsuyumu, S., Goto, M., and Kijima, T., 1988, Coronatine production byXanthomonas campestris pv. phormiicola, Fifth International Congress of Plant Pathology, p. 104.Google Scholar
  185. Taunton, J., Hassig, C, A., and Schreiber, S.L., 1996, A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p, Science 272: 408–411.Google Scholar
  186. Thomas, M.D, Langston-Unkefer, P.J., Uchytil, T.F., and Durbin, R.D 1983, Inhibition of glutamine synthetase from pea by tabtoxinine 13-lactam, Plant Physiol. 71: 912–915.PubMedCrossRefGoogle Scholar
  187. Tipton, C.L., Paulsen, P.V., and Betts, R.E., 1977, Effects ofophiobolin A on ion leakage and hexose uptake by maize roots, Plant Physiol 59: 907–910.PubMedCrossRefGoogle Scholar
  188. Tomas, A., Feng, G.H., Reeck, G.R., Bockus, W.W., and Leach, J.E., 1990, Purification of a cultivar-specific toxin from Pyrenophora tritici repentis, causal agent of tan spot of wheat, Mol. Plant-Microbe Interact 3: 221–224.CrossRefGoogle Scholar
  189. Trewavas, A., and Gilory, S., 1991, Signal transduction in plant cells, Trends in Genetics 7: 356–361.PubMedGoogle Scholar
  190. Tsuge, T., Hayashi, N., and Nishimura, S., 1987, Selection of auxotrophic mutants and heterokaryosis in Alternaria alternata, Ann. Phytopathol. Soc. Jpn 53: 182–190.CrossRefGoogle Scholar
  191. Turgeon, B.G., Kodama, M., Yang, G., Rose, M.S., Lu, S.W., and Yoder, O.C., 1995, Function and chromosomal location of the Cochliobolus heterostrophus TOXI locus, Can. J. Bot 73: 1071–1076.CrossRefGoogle Scholar
  192. Turner, J.G., and Debbage, J.M., 1982, Tabtoxin-induced symptoms are associated with accumulation of ammonia formed during photorespiration, Physiol. Plant Pathol 20: 223–233.CrossRefGoogle Scholar
  193. Turner, J.G., and Taha, R.R., 1984, Contribution of tabtoxin to the pathogenicity of Pseudomonas syringae pv. tabaci, Physiol Plant Pathol. 25: 55–69.CrossRefGoogle Scholar
  194. Tzeng, T.H., Lyngholm, L.K., Ford, C.F., and Bronson, C.R., 1992, A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus, Genetics 130: 81–96.PubMedGoogle Scholar
  195. Uchytil, T.F., and Durbin, R.D., 1980, Hydrolysis of tabtoxins by plant and bacterial enzymes, Experientia 36: 301–302.CrossRefGoogle Scholar
  196. Ullrich, M., Penaloza-Vazquez, A., Bailey, A.M., and Bender, C.L., 1995, A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine, J. Bacteriol 177: 6160–6169.PubMedGoogle Scholar
  197. Unkefer, C, J., London, R.E., Durbin, R.D., Uchytil, T.F., and Langston-Unkefer, P.J., 1987, The biosynthesis of tabtoxinine beta lactam. Use of specifically “C labeled glucose and ”C NMR spectroscopy to identify its biosynthetic precursors, J. Biol. Chem 262: 4994–4999.PubMedGoogle Scholar
  198. Upchurch, R.G., 1995, Genetic regulation of cercosporin production in Cercospora kikuchi: Dealing with the problems of fungal damage in soybean and other oilseeds, J. American Oil Chem. Soc 72: 1435–1438.CrossRefGoogle Scholar
  199. VanDerBiezen, E.A., Nijkamp, H.J.J., and Hille, J., 1996, Mutations at the Asc locus to tomato confer resistance to the fungal pathogen Alternaria alternata f.sp. lycopersici, Theo. Appl. Gent 92: 898–904.CrossRefGoogle Scholar
  200. Vasquez, A.P., Preston, G.M., Collmer, A., and Bender, C.L., 2000, Regulatory interactions between the hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000, Microbiology 146: 2447–2456.Google Scholar
  201. Vidhyasekaran, P., Borromeo., E.S., and Mew, T.W., 1986, Host-specific toxin production by Helminthosproium oryzae, Phytopathology 76: 261–266.Google Scholar
  202. Vidhyasekaran, P., Ponmalar, T.R., Samiyappan, R., Velazhahan, R., Vimala, R., Ramanathan, A., Paranitharan, V., and Muthukrishnan, S., 1997, Host specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen, Phytopathology 87: 1258–1263.PubMedCrossRefGoogle Scholar
  203. Vidhyasekaran, P., 1995, Role of toxins in cell membrane dysfunction and cell death, in: Fungal Pathogenesis in Plants and Crops. Mol. Biology and Host Defence Mechanisms, Marcel Dekker, New York, pp. 494–539.Google Scholar
  204. Walton, J.D., Earle, E.D., and Gibson, B.W., 1982, Purification and structure of the host-specific toxin from Helminthosporium carbonum race 1, BioChem. and Biophysical Research Communications 107: 785–794.CrossRefGoogle Scholar
  205. Walton, J.D., 1996, Host-selective toxins: Agents of compatibility, The Plant Cell 8: 1723–1733.PubMedGoogle Scholar
  206. Walton, J.D., and Panaccione, D.G., 1993, Host-selective toxins: Perspectives and progress, Annu. Rev. Phytopath 31: 275–303.CrossRefGoogle Scholar
  207. Wevelsiep, L., Rupping, E., and Knogge, W., 1993, Stimulation of barley plasmalemma H’ATPase by phytotoxic peptides from the fungal pathogen Rhynchosporium secalis, Plant Physiol. 101: 297–301.PubMedGoogle Scholar
  208. Wheeler, H., and Black, H.S., 1963, Effects of Helminthosporium victoriae and victorin upon permeability, American J. Botany 50: 686–693.CrossRefGoogle Scholar
  209. Wiebe., W.L., and Campbell, R.N., 1993, Characterization of Pseudomonas syringae pv. maculicola and comparisons with P syringae pv. tomato, Plant Dis. 77: 414–419.CrossRefGoogle Scholar
  210. Wolpert, T.J., and Dunkle, L.D., 1983. Alterations in gene expression in sorghum induced by the host-specific toxin from Periconia circinata, Proc. Natl. Acad. Sci. USA 80: 6576–6580.PubMedCrossRefGoogle Scholar
  211. Wolpert, T.J., and Macko, V., 1989, Specific binding of victorin to a I00-kDa protein from oats, Plant Physiol. 95: 917–920.CrossRefGoogle Scholar
  212. Wolpert, T.J., Macko, V., Acklin, W., and Arigoni, D., 1988, Molecular features affecting the biological activity of the host selective toxins from Cochliobolus victoriae, Plant Physiol. 87: 37–41.CrossRefGoogle Scholar
  213. Wolpert, T.J., Macko, V., Acklin, W., Jaun, B., Seibl, J., Meili, J., and Arigoni, D., 1985, Structure of victorin C, the major host-selective toxin from Cochliobolus victoriae, Experientia 41: 1524–1529.CrossRefGoogle Scholar
  214. Wolpert, T.J., Navarre, D.A., Lorang, J.M., and Moore, D.L., 1995, Molecular interactions of victorin and oats, Can. J Bot 73: 475–482.CrossRefGoogle Scholar
  215. Wolpert, T.J., Navarre, D.A., Moore, R.A., and Macko, V., 1994, Identification of the 100-kDa victorin binding protein from oats, Plant Cell 6: 1145–1155.PubMedGoogle Scholar
  216. Xiao, J.Z., Tsuda, M., Dokem, N., and Nishimura, S, 1991, Phytotoxin produced by germinating spores of Bipolaris oryzae, Phytopathology 81: 58–64.CrossRefGoogle Scholar
  217. Yun, S.H., Turgeon, B.G., and Yoder, O.C., 1997, REMI-induced mutants of Mycosphaerellazeae-maydis lacking the polyketide PM-toxin are deficient in pathogenesis to corn, Physiol. Mol. Plant Pathol 52: 53–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • R. Samiyappan
    • 1
  • P. Balasubramanian
    • 1
  • S. Babu
    • 1
  • R. Nandakumar
    • 1
  • V. Shanmugam
    • 1
  • T. Raguchander
    • 1
  • A. Ramanathan
    • 1
  1. 1.Department of Plant PathologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations