Inhibition of Ceramide Synthesis in Plants by Phytotoxins

  • H. K. Abbas
  • S. O. Duke
  • W. T. Shier
  • M. V. Duke
Chapter

Abstract

Inhibition of ceramide synthase has recently been identified (Abbas et al., 1993c, d; Abbas and Shier, 1997; Abbas et al., 1998c; Vesonder et al., 1992) as the mechanism of action of a small group of phytotoxins isolated from various fungi (Figure 1). This group of compounds causes dramatic effects in both animal and plant systems (Abbas et al., 1998a; Abbas and Boyette, 1992; Abbas et al., 1999; 1996; 1993b; 1995b, c, d;1991; Kellerman et al.,1990; Marasas et al., 1988; Shier et al., 1997; Shier and Abbas, 1999), and the evidence supports inhibition of ceramide synthase as the toxic mechanism (Abbas et al., 1995a; 1997b; 1994; Abbas and Shier, i 998; Norred,1993; Riley et al., 1994; 1996). Ceramide synthase is a key enzyme in the biosynthesis (Figure 2) of sphingolipid components of cell membranes (Figure 3) (Riley et al., 1993; Wang et al.,1991;1992; Lynch, 2000; Merrill, 1993b; Norred, 1993; Shier and Shier, 2000). Ceramide synthase inhibitors can be conveniently divided into two groups (Figure 1). The first group includes the AAL-toxins (Bottini and Gilchrist, 1981; Bottini et al., 1981; Caldas et al., 1994) and the fumonisins (Bezuidenhout et al., 1988; Gelderblom et al., 1988), both of which are structural analogs of the ceramide synthase substrate sphingosine. The second group consists of australifungin and its derivatives (Manadala et al., 1995), which are not apparent substrate analogs of ceramide synthase. These toxins were initially studied as inhibitors of mammalian ceramide synthase, but more recently studies have been extended to plant ceramide synthases. Research has been conducted to develop ceramide synthase as a target for new bioherbicides. However, fumonisins in food and feed have been shown to be toxic to animals and humans. The FDA has set guidelines for fumonisin levels in corn and corn products between 2 to 4 ppm. These mycotoxins are a serious public health issue (NTP, 1999). Thus, inhibitors of ceramide synthase have assumed importance in food safety, as well as in understanding the chemical ecology between plants and fungi.

Keywords

Alternaria Alternata Sphingoid Base Fusarium Moniliforme Sphingolipid Metabolism Sucrose Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, H.K., and Boyette, C.D., 1992, Phytotoxicity of fumonisin B1 on weed and crop species, Weed Technology 6: 548–552.Google Scholar
  2. Abbas, H.K., and Duke, S.O., 1995, Phytotoxins from plant pathogens as potential herbicides, Journal of Toxicology–Toxin Reviews 14: 523–543.Google Scholar
  3. Abbas, H.K., and Duke, S.O., 1997, Plant pathogens and their phytotoxins as herbicides, in: Toxins in Plant disease Development and Evolving Biotechnology, R.K. Upadhyay and K.G. Mukerji, eds., Oxford & IBH Publishing, New Delhi, pp. 1–20.Google Scholar
  4. Abbas, H.K., and Shier, W.T., 1997, Phytotoxicity of australifungin and fumonisins to weeds, The 1997 Brighton Crop Protection Conference–Weeds, pp. 795–800.Google Scholar
  5. Abbas, H.K., and Shier, W.T., 1998, Fumonisins as mycotoxins and phytotoxins, Recent Res Devel. in Agricultural & Food Chem. 2: 27–47.Google Scholar
  6. Abbas, H.K., Mirocha, C. J., and Shier, W. T., 1984a, Mycotoxins produced from fungi isolated from foodstuffs and soil: Comparison of toxicity in fibroblasts and rat feeding tests, Appl. Environ. Microbiol. 48: 654–661.PubMedGoogle Scholar
  7. Abbas, H.K., Shier, W. T., and Mirocha, C. J., 1984b, Sensitivity of cultured human and mouse fibroblasts to trichothecenes, J. Assoc. Off. Anal. Chem. 67: 607–610.PubMedGoogle Scholar
  8. Abbas, H.K., Boyette, C.D., Hoagland, R.E., and Vesonder, R.F., 1991, Bioherbicidal potential of Fusarium moniliforme and its phytotoxin, fumonisin, Weed Science 39: 673–677.Google Scholar
  9. Abbas, H.K., Paul, R.N., Boyette, C.D., Duke, S.O., and Vesonder, R.F., 1992, Physiological and ultrastructural effects of fumonisin on jimsonweed leaves, Canadian Journal of Botany 70: 1824–1833.CrossRefGoogle Scholar
  10. Abbas, H.K., Boyette, C.D., and Vesonder, R.F., 1993a, A biological control of weeds using AAL-toxin, United States Patent 5,256, 628; Date of patent: October 26, 1993, 10 pp.Google Scholar
  11. Abbas, H.K., Duke, S.O., and Tanaka,T., 1993b, Phytotoxicity of fumonisins and related compounds, Journal of Toxicology–Toxin reviews 12: 225–251.Google Scholar
  12. Abbas, H.K., Gelderblom, W.C.A., Cawood, M.E., and Shier, W.T., 1993c, Biological activities of fumonisins, mycotoxins from Fusarium moniliforme, in jimsonweed (Datura stramonium L.), Toxicom 31: 345–353.CrossRefGoogle Scholar
  13. Abbas, H.K., Vesonder, R.F., Boyette, C.D., and Peterson, S.W., 1993d, Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium), Canadian Journal of Botany7l: 155–160.Google Scholar
  14. Abbas, H.K., Tanaka, T., Duke, S.O., Porter, J.K., Wray, E.M., Hodges, L., Sessions, A.E., Wang, E., Merrill, A.H., and Riley, R.T., 1994, Fumonisin and AAL-toxin-induced disruption of sphingolipid metabilism with accumulation of free sphingoid bases: Involvement in plant disease, Plant Physiology 106: 1085–1093.PubMedGoogle Scholar
  15. Abbas, H.K., Duke, S.O., Paul, R.N., Riley, R.T., and Tanaka, T., 1995a, AAL-toxin, a potent natural herbicide disrupts sphingolipid metabolism in plants, Pesticide Science 43: 181–187.CrossRefGoogle Scholar
  16. Abbas, H.K., Tanaka T., and Duke, S.O., 1995b, Pathogenicity of Alternaria alternata and Fusarium moniliforme and phytotoxicity ofAAL-toxin and fumonisin B1 on tomato cultivars, Journal ofPhytopathology 143: 329–334.CrossRefGoogle Scholar
  17. Abbas, H.K., Tanaka, T., Duke, S.O., and Boyette, C.D., 1995c, Susceptiility of various crop and weed species to AAL-toxin, a natural herbicide, Weed Technology 9: 125–130.Google Scholar
  18. Abbas, H.K., Tanaka, T., and Shier, W.T., 1995d, Biological activity of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cells cultures, Phytochemistry 35: 1681–1689.CrossRefGoogle Scholar
  19. Abbas, H.K., Duke, SD., Shier, W.T., Riley, R.T., and Kraus, G.A., 1996, The chemistry and biological activities of the natural products AAL-toxin and the fumonisins, in: Natural Toxins 2. Structure, Mechanism of Action, and Detection, Advances in Experimental Medicine and Biology, Vol. 391, eds., B.R. Singh and A.T. Tu, Plenum, New York, pp. 293–308.Google Scholar
  20. Abbas, H.K., Smeda, R. J., Duke, S.O., and Shier, W.T., 1997a, Fumonisin-plant interactions, Bull. Inst. Compr. Agr. Sci. Kinki Univ. 5: 63–73.Google Scholar
  21. Abbas, H.K., Duke, S.O., Shier, W.T., Badria, F.A., Ocamb, C.M., Woodward, R.P., Xie, W., and Mirocha, C.J., I997b, Comparison of ceramide synthase inhibitors with other phytotoxins produced by Fusarium species, Journal of Natural Toxins 6: 163–181.Google Scholar
  22. Abbas, H.K., Duke, S.O., Merrill, A.H.,Wang, E., and Shier, W.T.,1998a, Phytotoxicity of australifungin, AAL-toxins and fumonisin B, to Lemna pausicostata, Phytochemistry 47: 1509–1514.Google Scholar
  23. Abbas, H.K., Paul, R.N., Riley, R.T., Tanaka, T., and Shier, W.T., 1998b, Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solanum nigrum L.) leaf discs and correlation with biochemical measures of toxicity, Toxicon 36: 1821–1832.PubMedCrossRefGoogle Scholar
  24. Abbas, H.K., Shier, W.T., Seo, J.A., Lee, Y. W., and Musser, S.M., 1998c, Phytotoxicity and cytotoxicity of the fumonisin C and P series of mycotoxins from Fusarium spp. fungi, Toxicon 36: 2033–2037.PubMedCrossRefGoogle Scholar
  25. Abbas, H.K., Duke, S.O., and Tanaka, T., 1999, Phytotoxicity of fumonisins and related compounds, Journal of Toxicology- Toxin Reviews 12: 225–251.Google Scholar
  26. Abbas, H.K., Duke, M.V., Shier, W.T., Riley, R.T., Merrill, A.H., Duke, S. O., 2000a, The structure-activity relationships of fungal toxins that disrupt sphingolipid biosynthesis in plant and animal systems, 3rd IWSC, Foz do Iguassu, Brazil.Google Scholar
  27. Abbas, H.K., Smeda, R. J., Gerwick, B.C., and Shier, W.T., 20006, Fumonisin B1 from the fungus Fusarium moniliforme causes contact toxicity in plants: Evidence from studies with biosynthetically labeled toxin, Journal of Natural Toxins 9: 85–100.Google Scholar
  28. Barbour, S., Edidin, M., Felding-Habermann, B., Taylor-Norton, J., Radin, N. S., and Fenderson, B. A., 1992, Glycolipid depletion using a ceramide analog (PDMP) alters growth, adhesion, and membrane lipid organization in human A431 cells, J. Cell. Phys. 150: 610–619.CrossRefGoogle Scholar
  29. Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F. O., Spiteller, G., and Vleggaar, R., 1988, Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme, J. Chem. Soc. Chem. Commun. 1988: 743–745.CrossRefGoogle Scholar
  30. Bielawska, A., Greenberg, M. S., Perry, D., Jayadev, S., Shayman, J. A., McKay, C., and Hannun, Y. A., 1996, (IS, 2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-l-propanol as an inhibitor of ceramidase, J. Biol. Chem. 271: 12646–12654.Google Scholar
  31. Bottini, A.T., and Gilchrist, D.G., 1981, Phytotoxins I. A 1-Aminodimethylheptadecapentol from Alternaria alternata f. sp. Lycopersici, Tetrahedron Letters 22: 2719–2722.CrossRefGoogle Scholar
  32. Bottini, A.T., Bowen, J.R., and Gilchrist, D.G., 1981, Phytotoxins H. Characterization of a phytotoxic fraction from Alternaria alternata f. Sp.lycopersici, Tetrahedron Letters 22: 2723–2726.CrossRefGoogle Scholar
  33. Brandwagt, B.F., Mesbah, L.A., Takken, F.L.W., Laurent, P.L., Knepper, T.J.A., Hille, J., and Nijkamp, H.J.J., 2000, A longevity assurance gene homolog of tomato mediated resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1, Proc. Natnl. Acad. Sci. USA 97: 4961–4966.CrossRefGoogle Scholar
  34. Brandwagt, B.F., Kneppers, T.J.A., Van der Weerden, G.M., Kijkamp, J.J., and Hille, J., 2001, Most AAL toxin-sensitive Nicotiana species are resistant to the tomato fungal pathogen Alternaria alternata f. sp. lycopersici, Molec. Plant-Microbe Interactions 14: 460–470.CrossRefGoogle Scholar
  35. Caldas, E.D., Jones, A.D., Ward, B., Winter, C.K., and Gilchrist, D.G., 1994, Structural characterization of three new AAL-toxins produced by Alternaria alternata f. sp. lycopersici, J. Agric. Food Chem. 42: 327–333.CrossRefGoogle Scholar
  36. Clouse, S.D., and Gilchrist, D.C., 1987, Interactin of the asc locus in F8 paired lines of tomato with Alternaria alternata f. sp. lycopersici and AAL-toxin, Phytopathology 77: 80–82.CrossRefGoogle Scholar
  37. Cutler, H.G., 1999, Potentially useful natural product herbicides from microorganisms, in: Principles and Practices on Plant Ecology: Allelochemical Interactions, Inderjit, K.M.M. Dakshini and C.L. Foy, eds., CRC Press, Boca Raton, pp. 497–516.Google Scholar
  38. Dayan, F.E., Romagni, J.G., Tellez, M.R., Rimando, A.M. and Duke, S.O., 1999, Managing weeds with natural products, Pesticide Outlook 10: 185–188.Google Scholar
  39. Duke, S.O., 1986, Microbial phytotoxins as herbicides–a perspective, in: The Science ofAllelopathy (eds A.R. Putnam and C.S. Tang) John Wiley, New York, pp. 287–304.Google Scholar
  40. Duke, S.O., and Abbas, H.K., 1995, Natural products with potential use as herbicides, American Chemical Society Symposium Series 582: 348–362.Google Scholar
  41. Duke, S.O., and Lydon, J., 1993, Natural phytotoxins as herbicides, American Chemical Society Symposium Series 524: 110–124.Google Scholar
  42. Duke, S.O., Abbas, H.K., Boyette, C.D., and Gohbara, M., 1991, Microbial compounds with the potential of herbicidal use, Brighton Crop Protection Conference, Weeds-1991, pp. 155–164.Google Scholar
  43. Duke, S.O., Abbas, H.K., Amagasa, T., and Tanaka, T., 1996a, Phytotoxins of microbial origin with potential for use as herbicides, in: Crop Protection Agents from Nature: Natural Products and Analogues, Critical Reviews on Applied Chemistry, Vol. 35, L.G. Copping ed., Society for Chemical Industries, Cambridge, UK, pp. 82–113.Google Scholar
  44. Duke, S.O., Abbas, H.K., Duke, M.V., Lee, H.J., Vaughn, K.C., Amagasa, T., and Tanaka, T., 1996b, Microbial phytotoxins as potential herbicides, Journal of Environmental Science and Health, Part B–Pesticides, Food Contaminants, and Agricultural Wastes B31: 427–434.Google Scholar
  45. Duke, S.O., Dayan, F.E., Hernandez, A., Duke, M.V., and Abbas, H.K., 1997, Natural products as leads for new herbicide modes of action, Brighton Crop Protection Conference, Weeds - 1997, 2: 579–586.Google Scholar
  46. Duke, S.O., F.E. Dayan, and A.M. Rimando, 2000a, Natural products and herbicide discovery, in: Herbicides and their Mechanisms of Action, A.H. Cobb and R.C. Kirkwood, eds., Academic Press, Sheffield, pp. 105–133.Google Scholar
  47. Duke, S.O., F.E. Dayan, J.G. Romagni, and A.M. Rimando, 2000b, Natural products as sources of herbicides: current status and future trends, Weed Res. 40: 99–111.CrossRefGoogle Scholar
  48. Duke, S.O., F.E. Dayan, and J.G. Romagni, 2000c, Natural products as sources for new mechanisms of herbicidal action, Crop Protect. 19: 583–589.CrossRefGoogle Scholar
  49. Fuson, G.B., and Pratt, D., 1988 Effects of the host-selective toxins of Alternaria alternata f. sp. lycopersici on suspension-cultured tomato cells, Phytopathology78: 1641–1648.Google Scholar
  50. Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. C., Horak, R. M., Vleggaar, R., and Kriek, N. P. J., 1988, Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme, Appl. Environ. Microbiol. 54: 1806–1811.PubMedGoogle Scholar
  51. Gilchrist, D., 1983, Molecular modes of action, in: Toxins and Plant Pathogenesis, J.M. Daly, and B.J. Deverall, eds., Academic Press, New York, pp. 81–136.Google Scholar
  52. Gilchrist, D.G., 1997, Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signaling, Cell Death Differ. 4: 689–698.PubMedCrossRefGoogle Scholar
  53. Gilchrist, D. G., and Grogan, R. G., 1976, Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici, Phytopathology 66: 165–171.CrossRefGoogle Scholar
  54. Gilchrist, D.G., Wang, H., and Bostock, M., 1995, Sphingosine-related mycotoxins in plant and animal diseases, Can J. Bot. 73 (Suppl. 1): 5459–5467.CrossRefGoogle Scholar
  55. Gilchrist, D.D., Wang, H., Lincoln,, J., Overduin, B., and Bostock, R., 1998, Lethal logic in apoptosis: toxin trigger programmed cell death during disease in eukaryotic cells, Dey. Plant Pathol. 13: 141–150.Google Scholar
  56. Hakomori, S-I., Yamamura, S., and Handa, K., 1998, Signal transduction through glyco(sphingo)lipids, Ann. New York Acad. Sci. 845: 1–10.CrossRefGoogle Scholar
  57. Hannun, Y. A., and Bell, R. M., 1993, The sphingomyelin cycle: a prototypic sphingolipid signaling pathway, Advances Lipid Res. 25: 27–41.Google Scholar
  58. Hannun, Y. A., and Obeid, L. M., 1995, Ceramide: an intracellular signal for apoptosis, TIBS 20: 73–77.PubMedGoogle Scholar
  59. Hannun, Y. A., Obeid, L. M., and Wolff, R. A., 1993, The novel second messenger ceramide: Identification, mechanism of action, and cellular activity, Advances Lipid Res. 25: 43–64.Google Scholar
  60. Harvey, A. L., 1990, Cytolytic toxins, in: Handbook ofToxinology, W.T. Shier and D. Mebs, eds., Marcel Dekker Inc., New York, pp. 1–66.Google Scholar
  61. Harwood, J.L., 1998, What’s so special about plant lipids?, in: Plant Lipid Biosynthesis, Fundamentals and Agricultural Applications, J.L. Harwood, ed., Cambridge University Press, Cambridge, UK, pp. 1–26.Google Scholar
  62. Horn, W. S., Smith, J. L., Bills, G. F., Raghoobar, S. L., Helms, G. L., Kurtz, M. B., Marrinan, J. A., Frommer, B. R., Thornton, R. A., and Mandala, S. M., 1992, Sphingofungins E and F: Novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii, J. Antibiotics 45: 1692–1696.CrossRefGoogle Scholar
  63. Humpf, H. U., Schmelz, E. M., Meredith, F. I., Vesper, H., Vales, T. R., Wang, E., Menaldino, D. S., Liotta, D. C., and Merrill, A. H. Jr., 1998, Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase. Formation ofN-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, API, and a new category of ceramide synthase inhibitor, J. Biol. Chem. 273: 19060–19064.PubMedCrossRefGoogle Scholar
  64. Kellerman, T.S., Marasas, W. F. O., Thiel, P. G., Gelderblom, W. C. A., Cawood, M., and Coetzer, J. A. W., 1990, Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B1, OnderstepoortJ. Vet. Res. 57: 269–275.Google Scholar
  65. Kenyon, W.H., Duke, S.O., and Vaughn, K.C., 1985, Sequence of herbicidal effects of acifluorfen on ultrastructure and physiology of cucumber cotyledon discs, Pestic. Biochem. Physiol. 24: 240–250.CrossRefGoogle Scholar
  66. Kluepfel, D., Bagli, J., Baker, H., Charest, M-P., Kudelski, A., Sehgal, S. N., and Vezina, C., 1972, Myriocin, a new antifungal antibiotic from Myriococcum albomyces, J. Antibiotics 25: 109–115.CrossRefGoogle Scholar
  67. Luberto, C., and Hannun, Y. A., 1999, Sphingolipid metabolism in the regulation of bioactive molecules, Lipids 34: S5 - S10.PubMedCrossRefGoogle Scholar
  68. Lynch, D.V., 1993, Sphingolipids, in: Lipid Metabolism in Plants, T.S. Moore, ed., CRC Press, Boca Raton, FL., pp. 285–308.Google Scholar
  69. Lynch, D.V., 2000, Enzymes of sphingolipid metabolism in plants, Methods Enzymol. 311: 130–149.PubMedCrossRefGoogle Scholar
  70. Lynch, D.V., and Fairfield, S.R., 1993, Sphingolipid long-chain base synthesis in plants, Plant Physiol. 103: 1421–1429.PubMedGoogle Scholar
  71. Lynch, D.V., and Phinney, A.J., 1995, The transbilayer distribution of glucosylceramide in plant plasma membrane, in: Plant Lipid Metabolism, J.-C. Kader and P. Mazliak, eds., Kluwer, Dordrecht, pp. 239–241.Google Scholar
  72. Lynch, D.V., Caffrey, M., Hogan, J.L., and Steponkus, P.L., 1992, Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism, Biophys. J. 61: 1289–1300.PubMedCrossRefGoogle Scholar
  73. Lynch, D.V., Spence, R.A., Theiling, K.M., Thomas, K.W., and Lee, M.T., 1993, Enzymatic reactions involved in ceramide metabolism, in: Biochemical and Molecular-Biological Aspects of Membrane and Storage Lipids of Plants, C.R. Somerviulle and N. Murata, eds., Amer. Soc. Plant Physiol., Rockville, MD, pp. 183–190.Google Scholar
  74. Lynch, D.V., Criss, A.K., Lehoczky, J.L., and Bui, V.T., 1997, Ceramide glucosylation in bean hypocotyl microsomes: evidence that steryl glucoside serves as glucose donor, Arch. Biochem. Biophys. 340: 311–316.PubMedCrossRefGoogle Scholar
  75. Mandala, S. M., Frommer, B. R., Thornton, R. A., Kurtz, M. B., Young, N. M., Cabello, M. A., Genilloud, O., Liesch, J. M., Smith, J. L., and Horn, W. S., 1994, Inhibition of serine palmitoyltransferase activity by lipoxamycin, J. Antibiotics 47: 376–379.CrossRefGoogle Scholar
  76. Mandala, S. M., Thornton, R. A., Frommer, B. R., Curotto, J. E., Rozdilsky, W., Kurtz, M. B., Giacobbe, R. A., Bills, G. F., Cabello, M. A., Martin, I., Pelaez, and Harris, G. H. 1995, The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis, J. Antibiotics 48: 349–356.Google Scholar
  77. Mandala, S. M., Thornton, R. A., Frommer, B. R., Dreikorn, S., and Kurtz, M. B., 1997, Viridiofungins, novel inhibitors of sphingolipid synthesis, J. Antibiotics 50: 339–343.CrossRefGoogle Scholar
  78. Marasas, W. F. O., Kellerman, T. S., Gelderblom, W. C. A., Coetzer, J. A. W., Thiel, P. G., and van der Lugt, J. J., 1988, Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme, Onderstepoort J. Vet. Res. 55: 197–203.PubMedGoogle Scholar
  79. Merrill, A. H. Jr., Hannun, Y. A., and Bell, R. M., 1993a, Introduction: Sphingolipids and their metabolites in cell regulation, Advances Lipid Res. 25: 1–24.Google Scholar
  80. Merrill, A.H. Jr., Wang, E., Gilchrist, D.G., and Riley, R.T., 1993b, Fumonisins and other inhibitors of de novo sphingolipid biosynthesis, Adv. Lipid Res. 26: 215–234.PubMedGoogle Scholar
  81. Merrill, A. H., Schmelz, E-M., Dillehay, D. L., Spiegel, S., Shayman, J. A., Schroeder, J. J., Riley, R. T., Voss, K. A., and Wang, E., 1997, Sphingolipids —the enigmatic lipid class: biochemistry, physiology and pathophysiology, Toxicol. App! Pharmacol. 142: 208–225.CrossRefGoogle Scholar
  82. Moore, T., Martineau, B., Bostock, R.M., Lincoln, J.E., and Gilchrist, DG., 1999, Molecular and genetic characterization of ethylene involvement in mycotoxin-induced cell death, Physiol. Molec. Plant Paththol. 54: 73–85.CrossRefGoogle Scholar
  83. Morita, N., Nakazato, H., Okuyama, H., Kim, Y., and Thompson, G.A. Jr., 1996, Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza, Biochim. Biophys. Acta 1290: 53–62.PubMedCrossRefGoogle Scholar
  84. Moussatos, V.V., Lucas, W.J., and Gilchrist, D.G., 1993, AAL toxin-induced changes in Lycopersicon esculentum Mill: differential sucrose transport in tomato lines isogenic for the Asc locus, Physiol. Molec. Plant Pathol. 42: 359–371.CrossRefGoogle Scholar
  85. Moussatos, V.V., Yang, S.F., Ward, B., and Gilchrist, D.G., 1994, AAL-toxin induced physiological changes in Lycopersicon esculentum Mill: roles for ethylene and pyrimidine intermediates in necrosis, Physiol. Molec. Plant Pathol. 44: 455–468.CrossRefGoogle Scholar
  86. Mukhopadhyay, T., Roy, K., Coutinho, L., Rupp, R. H., and Ganguli, B. N., 1987, Fumifungin, a new antifungal antibiotic from Aspergillusfumigatus Fresenius 1863, J. Antibiotics 40: 1050–1052.CrossRefGoogle Scholar
  87. Norred, W. P., 1993, Fumonisins–Mycotoxins produced by Fusarium moniliforme, J. Toxicol. Environ. Health 38: 309–328.PubMedCrossRefGoogle Scholar
  88. Nishimura, S., and Kohmoto, K., 1983, Host specific toxins and chemical structures from Alternaria species. Annual Reviews Phytopathol. 21: 87–116.CrossRefGoogle Scholar
  89. NTP (National Toxicology Program), 1999, Toxicology and carcinogenesis studies on fumonisin B1 in F344/N rats and B6CF1 mice (feed studies), Technical Report Series No. 496, NIH Publication No. 99–3955, U. S. Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC.Google Scholar
  90. Riley, R. T., An, N.-H., Showker, J. L., Yoo, H.-S., Norred, W. P., Chamberlain, W. J., Wang, E., Merrill, A. H. Jr., Montelin, G., Beasley, V. R., and Haschek, W. M., 1993, Alteration of tissue and serum sphinganine to sphingosine ratio: An early biomarker of exposure to fumonisin-containing feeds in pigs, Toxicol: Applied Pham. 118: 105–112.CrossRefGoogle Scholar
  91. Riley, R. T., Hinton, D. M., Chamberlain, W. J., Bacon, C. W., Wang, E., Merrill, A. H. Jr., and Voss, K. A., 1994. Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: A new mechanism ofnephrotoxicity, J Nutr. 124: 594–603.PubMedGoogle Scholar
  92. Riley, R.T., Wang, E., Schroeder, J. J., Smith, E. R., Plattner, R. D., Abbas, H. K., Yoo, H-S., and Merrill, A.H., 1996, Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogecity of fumonisin, Natural Toxin 4: 3–15.CrossRefGoogle Scholar
  93. Rosenberg, P., 1990, Phospholipases, in: Handbook of Toxinology, W.T. Shier and D. Mebs, eds., Marcel Dekker, Inc., New York, pp. 67–277.Google Scholar
  94. Sasaki, S., Hashimoto, R., Kiuchi, M., Inoue, K., Ikumoto, T., Hirose, R., Chiba, K., Hoshino, Y., Okumoto, T., Fujita, T., 1994, Fungal metabolites, Part 14. Novel potent immunosuppressants, mycesterincins, produced by Mycelia sterilia, J. Antibiotics 47: 420–433.CrossRefGoogle Scholar
  95. Scott, P. M., 1993, Fumonisins, Int. J. Food Microbiol. 18: 257–270.PubMedCrossRefGoogle Scholar
  96. Shier, W.T., and Shier, A.C., 2000, Sphingosine-and ceramide-analog toxins-an update, Journal of Toxicology-Toxin Reviews 193: 189–246.Google Scholar
  97. Shier, W.T., Abbas, H.K., and Badria, F.A., 1997, Structure-activity relationships of the corn fungal toxin fumonisin B: implications for food safety, Journal of Natural Toxins 6: 225–242.Google Scholar
  98. Shier, W.T., and Abbas, H.K., 1999, Current issues in research on fumonisins, mycotoxins which may cause nephropathy, Journal of Toxicology-Toxin Reviews 18: 323–335.Google Scholar
  99. Siehl, D.L., 1997, Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis, in: Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, R.M. Roe, J.D. Burton, and R.J. Kuhr, eds., lOs Press, Amsterdam, pp. 37–67.Google Scholar
  100. Siler, D.J., and Gilchrist, D. G., 1983, Properties of host specific toxins produced by Alternaria alternata f. sp. lycopersici in culture and in tomato plants, Physiological Plant Pathology 23: 265–274.CrossRefGoogle Scholar
  101. Somerville, C., Browse, J., Jaworski, J.G., and Ohlrogge, J.G., 2000, Lipids, in: Biochemistry and Molecular Biology of Plants, B. Buchanan, W. Gruissem and R. Jones, eds., Amer. Soc. Plant Physiol., Rockville, MD, pp. 456–457.Google Scholar
  102. Strobel, G., Kenfield, D., Bunker, G., Sugawara, F., and Clardy, J., 1991, Phytotoxins as potential herbicides, Experientia 47: 819–826.CrossRefGoogle Scholar
  103. Tanaka, T., Abbas, H.K., and Duke, S.O., 1993, Structure-dependent phytotoxicity of fumonisins and related compounds in a duckweed bioassay, Phytochemistry 33: 779–785.CrossRefGoogle Scholar
  104. U. S. Food and Drug Administration (FDA), 2000, Guidance for industry: Fumonisin levels in human foods and animal feeds, June 6, 2000, pp. 1–4.Google Scholar
  105. VanMiddlesworth, F., Ciacobbe, R. A., Lopez, M., Garrity, G., Bland, J. A., Bartizal, K., Fromtling, R. A., Polishook, J., Zweerink, M., Edison, A. M., Rozdilsky, W., Wilson, K. E., and Monaghan, R. L., 1992, Sphingofungins A, B, C, and D: a new family of antifungal agents, J. Antibiotics 45: 861–867.CrossRefGoogle Scholar
  106. Vesonder, R. F., Peterson, R. E., Labeda, D., and Abbas, H.K., 1992, Comparative phytotoxicity of the fumonisin, AAL-toxin and yeast sphingolipids in Lemna minor L. (Duckweed), Archives of Environmental Contamination and Toxicology 23: 464–467.CrossRefGoogle Scholar
  107. Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T., and Merrill, A. H. Jr., 1991, Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme, J. Biol. Chem. 266: 14486–14490.PubMedGoogle Scholar
  108. Wang, E., Ross, P. F., Wilson, T. M., Riley, R. T., and Merrill, A. H. Jr., 1992, Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme, J. Nutr. 122: 1706–1716.PubMedGoogle Scholar
  109. Wang, H., Jones, C., Ciacci-Zanella, J., Holt, T., Gilchrist, D.G., and Dickman, MB, 1996a, Fumonisins and Alternaria alternata f sp. lycopersici toxins: Sphinganine analog mycotoxins induce apoptosis in monkey kidney cells, Proc. Natl. Acad. Sci. USA 93: 3461–3465.PubMedCrossRefGoogle Scholar
  110. Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G., 1996b, Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development, Plant Cell 8: 375–391.PubMedGoogle Scholar
  111. Winter, C.K., Gilchrist, D.G., Dickman, M.B., and Jones, C., 1996, Chemistry and biological activity of AAL toxins, in: Fumonisins in Food, L. Jackson et al., eds., Plenum Press, NY, pp. 307–316.Google Scholar
  112. Yoo, H-S., Norred, W. P., Showker, J., and Riley, R. T., 1996, Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisin-induced cytotoxicity, Toxicology and Applied Pharmacology 138: 211–218.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • H. K. Abbas
    • 1
  • S. O. Duke
    • 2
  • W. T. Shier
    • 3
  • M. V. Duke
    • 1
  1. 1.United States Department of Agriculture, Agriculture Research ServiceSouthern Weed Science Research UnitStonevilleUSA
  2. 2.United States Department of Agriculture, Agricultural Research ServiceNatural Products Utilization Research UnitUniversityUSA
  3. 3.Department of Medicinal Chemistry, College of PharmacyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations