Algal and Cyanobacterial Metabolites as Agents for Pest Management
Abstract
Since the early 1970s, agriculture has struggled with the evolution of resistance to chemical agents used to control pests. Increased necessity for repeated chemical applications, development of pesticide cross-resistance, and disease resistance management strategies have overshadowed the use of agricultural chemicals. Scientists are currently attempting to control agricultural pests with fewer effective chemical controls. In addition, the desire for safer pesticides with less environmental toxicity is a major public concern. Particularly desirable is the discovery of totally novel, prototype pesticidal agents representing new chemical classes with different toxicities that operate by different modes of action and, consequently, lack cross-resistance with currently used chemicals. In this respect, evaluating natural products and extracts to identify potential new pesticides offers an approach to discover new chemical entities that have never been synthesized by scientists.
Keywords
Microcystis Aeruginosa Domoic Acid Algicidal Activity Lipophilic Extract Cyanobacterial ExtractPreview
Unable to display preview. Download preview PDF.
References
- Abe, H., Uchiyama, M., Sato, R., and Muto, S., 1974, Plant growth regulators occurring in marine algae, Plant GrowthSubst., Proc. Int. Conf pp. 201–206.Google Scholar
- Agrios, G.N., 1997, Plant Pathology, Academic Press, San Diego, California.Google Scholar
- Argandona, V., Del Pozo, T., San-Martin, A., and Rovirosa, J., 2000, Insecticidal activity ofPlocamium cartilagineum monoterpenes, Bol. Soc. Chil. Quim. 45: 371–376.Google Scholar
- Atta-Ur-Rahman, Choudhary, M.I., Shabbir, M.M., Ghani, U., and Shameel, M., 1997, A succinylanthranilic acid ester and other bioactive constituents ofJolyna laminarioides, Phytochemisty 46: 1215–1218.Google Scholar
- Bagchi, S.N., Chauhan, V.S., and Marwah, J.B., 1993, Effect of an antibiotic from Oscillatoria late-virens on growth, photosynthesis, and toxicity ofMicrocysits aeruginosa, Curr. Microbiol. 26: 223–228.CrossRefGoogle Scholar
- Bailey, J.A., and Jeger, M.J., 1992, Colletotrichum: Biology, Pathology and Control, CAB International, Wallingford, United Kingdom.Google Scholar
- Bates, S.S., Garrison, D.L., and Horner, R.A., 1998, Bloom dynamics and physiology of domoic acid-producing Pseudo-nitzschia species, in: NATO ASI Series G: Ecological Sciences, Vol. 41, Physiological Ecology of Harmful Algal Blooms, D.M. Anderson, A.D. Cembella and G.M. Hallegraeff, eds., Springer-Verlag, Berlin Heidelberg, pp. 267–292.Google Scholar
- Bennamara, A., Abourriche, A., Berrada, M., Chaarrouf, M., Chaib, N., Boudouma, M., and Garneau, F.X., 1999, Methoxybifurcarenone: an antifungal and antibacterial meroditerpenoid from the brown alga Cystoseira tamariscifolia, Phytochemistry 52: 37–40.PubMedCrossRefGoogle Scholar
- Bhakuni, D.S., 1998, Some aspects of bioactive marine natural products, J. Indian Chem. Soc. 75: 191–205.Google Scholar
- Blunt, J.W., Munro, M.H.G., Blunt, D.A., Hickford, S.J.H., and Vigneswaran, M., 2000, MarinLit Marine Literature DataBase, version 10.71 (August 21, 2000 ), University of Canterbury, Department of Chemistry, Christchurch, New Zealand.Google Scholar
- Caccamese, S., Azzolina, R., Fumari, G., Cormaci, M., and Grasso, S., 1981, Antimicrobial and antiviral activities of some marine algae from Eastern Sicily, Botanica Marina 24: 365–367.CrossRefGoogle Scholar
- Cannel, R.J.P., 1993, Algae as a source of biologically active products, Pestic. Sci. 39: 147–153.CrossRefGoogle Scholar
- Carmel i, S., Moore, R.E., and Patterson, G.M.L., 1990, Tolytoxin and new scytophycins from three species of Scytonema, J. Nat. Prod. 53: 1533–1542.PubMedCrossRefGoogle Scholar
- Carmichael, W.W., 1992, Cyanobacteria secondary metabolites-the cyanotoxins, J. Appl. Bacterial. 72: 445–459.CrossRefGoogle Scholar
- Carter, D.C., Moore, R.E., Mynderse, J.S., Niemczura, W.P., and Todd, J.S., 1984, Structure ofmajusculamide C, a cyclic depsipeptide from Lyngbya majuscula, J. Org. Chem. 49: 236.CrossRefGoogle Scholar
- Casanova, M.T., Burch, M.D., Brock, M.A., and Bond, P.M., 1999, Does toxic Microcystis aeruginosa affect aquatic plant establishment? Environ. Toxicol. 14: 97–109.CrossRefGoogle Scholar
- Chauhan, V.S., Marwah, J.B., and Bagchi, S.N., 1992, Effect of an antibiotic from Oscillatoria sp. on phytoplankters, higher plants and mice, New Phytol. 120: 251–257.CrossRefGoogle Scholar
- Codd, G.A., 1995, Cyanobacterial toxins: occurrence, properties and biological significance, Water Sci Technol. 32: 149–156.Google Scholar
- Dayan, F.E., Romagni, J.G., and Duke, S.O., 2000, Investigating the mode of action of natural phytotoxins, J. Chem. Ecol. 26: 2079–2094.CrossRefGoogle Scholar
- Dixon, G.K., 1996, Biologically active compounds from algae, Crit. Rep. Appl. Chem. 35: 114–216.Google Scholar
- Dombos, D.L., Jr., and Spencer, G.F., 1990, Natural products phytotoxicity: a bioassay suitable for small quantities of slightly water-soluble compounds, J. Chem. Ecol. 16: 339–352.CrossRefGoogle Scholar
- El Sayed, K.A., Dunbar, D.C., Perry, T.L., Wilkins, S.P., Hamann, M.T., Greenplate, J.T., and Wideman, M.A., 1997, Marine natural products as prototype insecticidal agents, J. Agric. Food Chem. 45: 2735–2739.CrossRefGoogle Scholar
- English, C.R., Schwedler, T.E., and Dyck, L.A., 1993, Aphanizomenonflos-aquae, a toxic blue-green alga in commercial channel catfish, Ictalurus punctatus, ponds: a case history, J. Appl. Aquacult. 3: 195–209.Google Scholar
- Entzeroth, M., Mead, D.J., Patterson, G.M.L., and Moore, R.E., 1985, A herbicidal fatty acid produced by Lyngbya aestuarii, Phytochemistry 24: 2875–2876.CrossRefGoogle Scholar
- Falch, B.S., König, G.M., Wright, A.D., Sticher, O., Angerhofer, C.K., Pezzuto, J.M., and Bachmann, H., 1995, Biological activities of cyanobacteria: evaluation of extracts and pure compounds, Plant Med. 61: 321–328.CrossRefGoogle Scholar
- Fattorusso, E., Magno, S., Mayol, L., Santacroce, C., and Sica, D., 1976, Oxocrinol and crinitol, novel linear terpenoids from the brown alga Cystoseira crinita, Tetrahedron Lett. 12: 937–940.CrossRefGoogle Scholar
- Fenical, W., 1983, Investigation of benthic marine algae as a resource for new pharmaceuticals and agricultural chemicals. Proc. Joint China-US Phycol. Symp., C.K. Tseng, ed., Science Press, Beijing, China, pp. 497–521.Google Scholar
- Fenical, W., and Paul, V.J., 1984, Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae, Hydrobiologia 116 /117: 135–140.CrossRefGoogle Scholar
- Fenical, W., and Sims, J.J., 1973, Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris zonarioides, J. Org. Chem. 38: 2383–2386.PubMedCrossRefGoogle Scholar
- Flores, E., and Wolk, C.P., 1986, Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains, Arch. Microbiol. 145: 215–219.PubMedCrossRefGoogle Scholar
- Fukuzawa, A., and Masamune, T., 1981, Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada, Tetrahedron Lett. 22: 4081–4084.CrossRefGoogle Scholar
- Gleason, F.K., 1986, Cyanobacterin herbicide, U.S. Patent Number 4,626, 271.Google Scholar
- Gleason, F.K., 1990, The natural herbicide, cyanobacterin, specifically disrupts thylakoid membrane structure in Euglena gracilis strain Z., FEMS Microbiol. Lett. 68: 77–82.CrossRefGoogle Scholar
- Gleason, F.K., and Baxa, C.A., 1986, Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms, FEMS Microbiol. Lett. 33: 85–88.CrossRefGoogle Scholar
- Gleason, F.K., and Case, D.E., 1986, Activity of the natural algicide cyanobacterin on angiosperm, Plant Physiol. 80: 834–837.PubMedCrossRefGoogle Scholar
- Gleason, F.K., and Paulson, J.L., 1984, Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp., Arch. Microbiol. 138: 273–277.CrossRefGoogle Scholar
- Gleason, F.K., Case, D.E., Sipprell, K.D., and Magnuson, T.S., 1986, Effect of the natural algicide, cyanobacterin, on a herbicide-resistant mutant of Anacystis nidulans R2, Plant Sci. 46: 5–10.CrossRefGoogle Scholar
- Gross, E.M., Wolk, C.P., and Jüttner, F., 1991, Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola, J. Phycol. 27: 686–692.CrossRefGoogle Scholar
- Hagmann, L., and Jüttner, F., 1996, Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity, Tetrahedron Lett. 37: 6539–6542.CrossRefGoogle Scholar
- Harris, D.O., and Parekh, M.C., 1974, Further observations on an algicide produced by Pandorina morum, a colonial green flagellate, Microbios 9: 259–265.PubMedGoogle Scholar
- Helms, G.L., Moore, R.E., Niemczura, W.P., and Patterson, G.M.L., 1988, Scytonemin A, a novel calcium antagonist from a blue-green alga, J. Org. Chem. 53: 1298–1307.CrossRefGoogle Scholar
- Ishida, K., and Murakami, M., 2000, Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa, J. Org. Chem. 65: 5898–5900.PubMedCrossRefGoogle Scholar
- Jaki, B., Orjala, B., Heilmann, J., Linden, A., Vogler, B., and Sticher, O., 2000, Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, J. Nat. Prod. 63: 339–343.PubMedCrossRefGoogle Scholar
- Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H., and Hong, Y.-K., 2000, Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae, J. Appl. Phycol. 12: 37–43.CrossRefGoogle Scholar
- Jung, J.H., Moore, R.E., and Patterson, G.M.L., 1991, Scytophycins from a blue-green alga belonging to the Nostocaceae, Phytochemistry 30: 3615–3616.CrossRefGoogle Scholar
- Jüttner, F., 1997, Nostocyclamide, a toxic decoupling agent ofNostoc, Abstr. IXInt. Symp. Phototrophic Prokaryotes, Vienna, Austria, Sept. 6–13, pp. 40.Google Scholar
- Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y., and Chihara, M., 1988, An allelopathic fatty acid from the brown alga Cladosiphon okamuranus, Phytochemistry 27: 731–735.CrossRefGoogle Scholar
- Kearns, K.D., and Hunter, M.D., 2000, Green algal extracellular products regulate antialgal toxin production in a cyanobacterium, Environ. Microbiol. 2: 291–297.PubMedCrossRefGoogle Scholar
- Kiviranta, J., Abdel-Hameed, A., Sivonen, K., Niemelä, S.I., and Carlberg, G., 1993, Toxicity of cyanobacteria to mosquito larvae — screening of active compounds, Environ. Taxi. Water Quality 8: 63–71.CrossRefGoogle Scholar
- König, G.M., and Wright, A.D., 1997a, Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa, Planta Med. 63: 186–187.PubMedCrossRefGoogle Scholar
- König, G.M., and Wright, A.D., 1997b, Laurencia rigida: chemical investigations of its antifouling dichloromethane extract, J. Nat. Prod. 60: 967–970.PubMedCrossRefGoogle Scholar
- König, G.M., Wright, A.D., and Linden, A., 1999, Plocamium hamatum and its monoterpenes: chemical and biological investigations of the tropical marine red alga, Phytochemistry 52: 1047–1053.PubMedCrossRefGoogle Scholar
- Krogmann, D.W., and Jagendorf, A.T., 1959, Inhibition of the Hill reaction by fatty acids and metal chelating agents, Arch. Biochem. Biophys. 80: 421–430.CrossRefGoogle Scholar
- Kubo, I., Matsumoto, T., and Ichikawa, N., 1985, Absolute configuration of crinitol: An acyclic diterpene insect growth inhibitor from the brown algae Sargassum tortile, Chem. Lett. 249–252.Google Scholar
- Kulik, M.M., 1995, The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi, Eur. J. Plant Path. 101: 585–599.CrossRefGoogle Scholar
- Lightner, D.V., 1978, Possible toxic effects of the marine blue-green alga, Spirulina subsalsa, on the blue shrimp, Panaeus stylirostis, J. Invert. Pathol. 32: 139–150.CrossRefGoogle Scholar
- Maas, J.L., 1998, Compendium of Strawberry Diseases, APS Press, St. Paul, Minnesota.Google Scholar
- Maas, J.L., and Palm, M.E., 1997, Occurrence of anthracnose irregular leafspot, caused by Colletotrichum acutatum, on strawberry in Maryland, Adv. Strawberry Res. 16: 68–70.Google Scholar
- Marston, A., and Hostettmann, K., 1991, Assays for molluscicidal, cercaricidal, schistosomicidal and piscidal activities, in: Methods in Plant Biochemistry, P.M. Dey and J.B. Harborne, eds., Academic Press, London, pp. 153–178.Google Scholar
- Mason, C.P., Edwards, K.R., Carlson, R.E., Pignatello, J., Gleason, F.K., and Wood, J.M., 1982, Isolation of chlorinecontaining antibiotic from the freshwater cyanobacterium Scytonema hofmanni, Science 215: 400–402PubMedCrossRefGoogle Scholar
- McLachlan, J., and Craigie, J.S, 1966, Antialgal activity of some simple phenols. J. Phycol. 2: 133–135.CrossRefGoogle Scholar
- Meada, M., Kodama, T., Tanaka, T., Ohfune, Y., Nomoto, K., Nishimura, K., and Fujita, T., 1984, Insecticidal and neuromuscular activities of domoic acid and its related compounds, (Nippon Noyaku Gakkaishi) J. Pesticide Sci. 9: 27–32.CrossRefGoogle Scholar
- Meada, M., Kodama, T., Tanaka, T., Yoshizumi, H., Takemoto, T., Nomoto, K., and Fujita, T., 1986, Structures of isodomoic acids A, B and C, novel insecticidal amino acids from the red alga Chondria armata, Cheni. Pharm. Bull. 34: 4892–4895.CrossRefGoogle Scholar
- Meada, M., Kodama, T., Tanaka, T., Yoshizumi, H., Takemoto, T., Nomoto, K., and Fujita, T., 1987, Structures of domoilactone A and B, novel amino acids from the red alga, Chondria armata, Tetrahedron Lett. 28: 633–636.CrossRefGoogle Scholar
- Metting, B., and Pyne, J.W., 1986, Biologically active compounds from microalgae, Enzyme Microb. Technol. 8: 386–394.CrossRefGoogle Scholar
- Mills, D.H., and Wyatt, J.T., 1974, Ostracod reactions to non-toxic and toxic algae, Oecologia (Berlin) 17: 171–177.Google Scholar
- Moon, R.E., and Martin, D.F., 1985, Allelopathic substances from a marine alga (Nannochloris sp.), ACSSymp. Ser. 268: 371–380.Google Scholar
- Moon, Si., Chen, L., Moore, R.E., and Patterson, G.M.L., 1992, Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca, J. Org. Chem. 57: 1097–1103.CrossRefGoogle Scholar
- Moore, R.E., 1996, Cyclic peptides and depsipeptides from cyanobacteria: a review, J. Ind. Microbiol. 16: 134–143.PubMedCrossRefGoogle Scholar
- Moore, R.E., Cheuk, C., and Patterson, G.M.L., 1984, Hapalindoles: new alkaloids from blue-green alga Hapalosiphon fontinalis, J. Am. Chem. Soc. 106: 6456–6457.CrossRefGoogle Scholar
- Moore, R.E., Furusawa, E., Norton, T.R., Patterson, G.M.L., and Mynderse, J.S., 1989, Scytophycins, U.S. Patent No. 4, 863, 955.Google Scholar
- Moore, R.E., Patterson, G.M.L., Mynderse, J.S., and Barchi, J., 1986, Toxins from cyanophytes belonging to the S cytone mataceae, Pure Appl. Chem. 58: 263–271.CrossRefGoogle Scholar
- Nagle, D.G., and Paul, V.J., 1999, Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds, J. Phycol. 35 (Suppl. 607): 1412–1421.Google Scholar
- Nizan, S., Dimentman, C., and Shilo, M., 1986, Acute toxic effects of the cyanobacterium Microcystis aeruginosa on Daphnia magna, Limnol. Oceanogr. 31: 497–502.CrossRefGoogle Scholar
- Orjala, J., and Gerwick, W.H., 1996, Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscule, J. Nat. Prod 59: 427–430.PubMedCrossRefGoogle Scholar
- Papke, U., Gross, E.M., and Francke, W., 1997, Isolation, identification, and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret), Tetrahedron Lett. 38: 379–382.CrossRefGoogle Scholar
- Patterson, G.M.L., Harris, D.O., and Cohen, W.S., 1979, Inhibition of phototsynthetic and mitochondrial electron transport by a toxic substance isolated from the alga Pandorina morum, Plant Sci. Lett. 15: 293–300.CrossRefGoogle Scholar
- Patterson, G.M.L., Larsen, L.K., and Moore, R.E., 1994, Bioactive natural products from blue-green algae, J. Appl. Phycol. 6: 151–157.CrossRefGoogle Scholar
- Patterson, G.M.L., Moore, R.E., Carmeli, S., Smith, C.D., and Kimura, L.H., 1995, Scytophycin compounds: compositions and methods for their production and use, U.S. Patent No. 5, 493, 933.Google Scholar
- Pergament, I., and Carmeli, S., 1994, Schizotrin A: a novel antimicrobial cyclic peptide from a cyanobacterium, Tetrahedron Lett. 35: 8473–8476.CrossRefGoogle Scholar
- Pignatello, J.J., Porwoll, J., Carlson, R.E., Xavier, A., Gleason, F.K., and Wood, J.M., 1983, Structure of the antibiotic cyanobacterin, a chlorine-containing y-lactone from the freshwater cyanobacterium Scytonema hofmanni, J. Org. Chem. 48: 4035–4038.CrossRefGoogle Scholar
- Prinsep, M.R., Thomson, R.A., West, M.L., and Wylie, B.L., 1996, Tolypodiol, an antiinflammatory diterpenoid from the cyanobacterium Tolypothrix nodosa, J. Nat. Prod 59: 786–788.PubMedCrossRefGoogle Scholar
- Saleh, M., Motawe, H.M., Mahmoud, F., Mahran, G.H., and Soliman, F.M., 1992, Chemical and antimicrobial study of Dictyota dichotoma var. implexa, Fitoterapia 63: 369–371.Google Scholar
- San-Martin, A., Negrete, R., and Rovirosa, J., 1991, Insecticide and acaricide activities of polyhalogenated monoterpenes from Chilean Plocamium cartilagineum, Phytochemistry 30: 2165–2169.CrossRefGoogle Scholar
- Schlegel, l., Doan, N.T., de Chazal, N., and Smith, G.D., 1999, Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria, J. App!. Phycol. 10: 471–479.CrossRefGoogle Scholar
- Schrader, K.K., de Regt, M.Q., Tucker, C.S., and Duke, S.O., 1997, A rapid bioassay for selective algicides, Weed Technol. 11: 767–774.Google Scholar
- Schrader, K.K., Duke, S.O., Kingsbury, S.K., Tucker, C.S., Duke, M.V., Dionigi, C.P., Millie, D.F., and Zimba, P.V., 2000, Evaluation of ferulic acid for controlling the musty-odor cyanobacterium, Oscillatoria perornata, in aquaculture ponds, J Appl. Aquacult. 10: 1–16.CrossRefGoogle Scholar
- Siddhanta, A.K., and Shanmugam, M., 1999, Metabolites of tropical marine algae of the family Codiaceae (Chlorophyta): chemistry and bioactivity, J. Indian Chem. Soc. 76: 323–334.Google Scholar
- Singh, LP., Milligan, K.E., and Gerwick, W.H., 1999, Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula, J. Nat. Prod. 62: 1333–1335.PubMedCrossRefGoogle Scholar
- Smith, G.D., and Doan, N.T., 1999, Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants, J. Appl. Phycol. 11: 337–344.CrossRefGoogle Scholar
- Smitka, T.A., Bonjouklian, R., Doolin, L., Jones, N.D., Deeter, J.B., Yoshida, W.Y., Prinsep, M.R., Moore, R.E., and Patterson, G.M.L., 1992, Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from three genera of blue-green algae belonging to the Stigonemataceae, J. Org. Chem. 57: 857–861.CrossRefGoogle Scholar
- Srivastava, A., Jüttner, F., and Strasser, R.J., 1998, Action of the allelochemical, fischerellin A, on photosystem II, Biochim. Biophys, Acta 1364: 326–336.Google Scholar
- Stephenson, W.M., 1966, The effect of hydrolysed seaweed on certain plant pests and diseases, Proc. 5th Intl. Seaweed Symp., Pergamon Press, Oxford, United Kingdom, pp. 405–415.Google Scholar
- Tabachek, J.L., and Yurkowski, M., 1976, Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin and 2-methylisoborneol, in saline lakes in Manitoba, J. Fish Res. Board Can. 33: 25–35.Google Scholar
- Targett, N.M., and McConnell, O.J., 1982, Detection of secondary metabolites in marine macroalgae using the marsh periwinkle, Littorina irrorata Say, as an indicator organism, J. Chem. Ecol. 8: 115–124.CrossRefGoogle Scholar
- Tellez, M.R., Dayan, F.E., Schrader, K.K., Wedge, D.E., and Duke, S.O., 2000, Composition and some biological activities of the essential oil ofCallicarpa americana (L.), J. Agric. Food Chem. 48: 3008–3012.PubMedCrossRefGoogle Scholar
- Todorova, A.K., Jüttner, F., Linden, A., Plüss, T., and von Philipsbom, W., 1995, Nostocyclamide: a new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria), J Org. Chem. 60: 7891–7895.CrossRefGoogle Scholar
- Tringali, C., Piattelli, M., Nicolosi, G., and Hostettmann, K., 1986, Molluscicidal and antifungal activity of diterpenoids from brown algae of the family Dictyotaceae, Planta Med. 5: 404–406.PubMedCrossRefGoogle Scholar
- Tucker, C.S., 2000, Off-flavor problems in aquaculture, Rev. Fish. Sci. 8: 45–88.CrossRefGoogle Scholar
- Turell, M.J., and Middlebrook, J.L., 1988, Mosquito inoculation: an alternative bioassay for toxins, Toxicon 26: 1089–1094.PubMedCrossRefGoogle Scholar
- Van Engen, D., Clardy, J., Kho-Wiseman, E., Crews, P., Higgs, M.D., and Faulkner, D.J., 1978, Violacene: a reassignment of structure, Tetrahedron Lett. 1: 29–32.CrossRefGoogle Scholar
- Vincent, A., Dayan, F.E., Maas, J.L., and Wedge, D.E., 1999, Detection and isolation of antifungal compounds in strawberry inhibitory to Colletotrichum fragariae, Adv. Strawberry Res. 18: 28–36.Google Scholar
- Watanabe, K., Miyakado, M., Ohno, N., Okada, A., Yanagi, K., and Moriguchi, K., 1989a, A polyhalogenated insecticidal monoterpene from the red alga, Plocamium telfairiae, Phytochemistry 28: 77–78.CrossRefGoogle Scholar
- Watanabe, K., Umeda, K., and Moriguchi, K., 1989b, Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada, Agric. Biol. Chem. 53: 2513–2515.CrossRefGoogle Scholar
- Wedge, D.E., and Kuhajek, J.M., 1998, A microbioassay for fungicide discovery, SAAS Bull. Biochem. Biotech. 11: 1–7.Google Scholar
- Wedge, D.E., and Nagle, D.G., 2000, A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens, J. Nat. Prod. 63: 1050–1054.PubMedCrossRefGoogle Scholar
- Wedge, D.E., Galindo, J.C.G., and Marcias, F.A., 2000, Fungicidal activity of natural and synthetic sesquiterpene lactone analogs, Phytochemisty 53: 747–757.CrossRefGoogle Scholar
- Welch, S.C., and Rao, A.S.C.P., 1977a, Stereoselective total synthesis of the fungitoxic hydroquinones (±) zonarol and (f) isozonarol, J. Org. Chem. 43: 1957–1961.CrossRefGoogle Scholar
- Welch, S.C., and Rao, A.S.C.P., 1977b, Stereoselective total synthesis of (±) zonarol and (±) isozonarol, Tetrahedron Lett. 6: 505–508.CrossRefGoogle Scholar
- Wessels, M., König, G.M., and Wright, A.D., 1999, A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale, J. Nat. Prod. 62: 927–930.PubMedCrossRefGoogle Scholar
- Wium-Andersen, S., Anthoni, U., Christophersen, C., and Houen, G., 1982, Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales), Oikos 39: 187–190.CrossRefGoogle Scholar