Genetic Improvement of Entomopathogenic Nematodes for Insect Biocontrol

  • Christopher W. Brey
  • Sarwar Hashmi
Chapter

Abstract

Entomopathogenic nematodes (families Heterorhabditidae and Steinernematidae) are the most important biological-control agents for soil-dwelling insect pests (Gaugler and Kaya, 1990). Several species of Heterorhabditids and Steinernematids are produced commercially and used as biotic insecticides. Their unique association with symbiotic bacteria (Xenorhabdus for Steinernematidae and Photorhabdus for Heterorhabditidae) enables them to rival the efficacy of chemical insecticides. Other key attributes include mass production, broad host range, and capacity to kill a host within 1 to 4 days. Furthermore, entomopathogenic nematodes are not pathogenic to plants or mammals, and have therefore been exempt from government regulation and registration requirements (Kaya and Gaugler, 1993). Nevertheless, there are ongoing efforts to improve entomopathogenic nematode beneficial traits or eliminate weaknesses by means of genetic manipulation in the areas of increased environmental tolerance, target specificity, enhanced host finding, mass production (Bedding, 1984), and increased storage-life (Burnell and Dowds,1996). Strain improvement using selection (screening a natural population), selective breeding, hybridization, and mutagenesis has been successful in many entomopathogenic nematode laboratories worldwide. Also, genetic engineering has shown some success, but it has not been widely utilized in strain improvement programs.

Keywords

Caenorhabditis Elegans Heat Tolerance Parasitic Nematode Selective Breeding Entomopathogenic Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhurst, R.J., and Bedding, R.A., 1978, A simple cross-breeding technique to facilitate species determination in the genus Neoaplectana, Nematologica 24: 328–330.CrossRefGoogle Scholar
  2. Alen, J.E., Daub, J., Guiliano, D., McDonnell, A., Lizotte-Waniewski, M., Taylor, D.W., and Blaxter, M., 2000, Analysis of genes expressed at the infective larval stage validates utility of Litomosoides sigmodontis as a murine model for filarial vaccine development, Infection and Immunity 68: 5454–5458.CrossRefGoogle Scholar
  3. Avancini, R.M.P., Walden, K.K.O., and Robertson, H.M., 1996, The genomes of most animals have multiple members of the Tcl family of transposable elements, Genetica 98: 131–140.PubMedCrossRefGoogle Scholar
  4. Barrett, J., 1991, Anhydrobiotic nematodes, Agricultural Zoology Reviews 4: 161–176.Google Scholar
  5. Bastin, P., Galvani, A., and Sperling, L., 2001, Genetic interference in protozoa, Research Microbiology 152: 123–129.CrossRefGoogle Scholar
  6. Bass, B.L., 2000, Double stranded RNA as a template for gene silencing, Cell 101: 235–238.PubMedCrossRefGoogle Scholar
  7. Bedding, R.A., 1984, Large scale production, storage, and transport of the insect parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Annals of Applied Biology 104: 117–120.CrossRefGoogle Scholar
  8. Behm, C.A., 1997, The role of trehalose in the physiology of nematodes, International Journal for Parasitiology 27: 215–229.CrossRefGoogle Scholar
  9. Blaxter, M.L., Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T., and Thomas, W.K., 1998, A molecular evolutionary framework for the phylum Nematoda, Nature 392: 71–75.PubMedCrossRefGoogle Scholar
  10. Bosher, J.M., and Labouesse, M., 2000, RNA interference: genetic wand and genetic watchdog, Nature Cell Biology 2: 31–36.CrossRefGoogle Scholar
  11. Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77: 71–94.PubMedGoogle Scholar
  12. Burnell, A.M., and Dowds, B.C.A., 1996, The genetic improvement of entomopathogenic nematodes and their symbiont bacteria: phenotypic targets, genetic limitations and an assessment of possible hazards, Biocontrol Science and Technology 6: 435–447.CrossRefGoogle Scholar
  13. Burnell, A.M., Nugent, M.J., O’Leary, S.A., and Stack, C.M., 1998, The use ofmutagenesis for strain improvement in entomopathogenic nematodes, in: Genetics and Molecular Biology of Entomopathogenic Nematodes, P. Abad, A.M. Burnell and F. Coudert, eds., European Commission Publications, Luxembourg, pp. 113–124.Google Scholar
  14. Chalfie, M., Yuan, T.U., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1999, Green fluorescent protein as a marker for gene expression, Science 263: 802–805.CrossRefGoogle Scholar
  15. Chuang, C.F., and Meyerowitz, E.M., 2000, Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana, Proceedings of the National Academy of Sciences 97: 4985–4990.CrossRefGoogle Scholar
  16. Clark, D.V., and Baillie, D.L., 1992, Genetic analysis and complementation by germ-line transformation of lethal mutations in the unc-22 IV region of Caenorhabditis elegans, Molecular and General Genetics 232: 97–105.PubMedCrossRefGoogle Scholar
  17. Close, T.J., 1996, Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins, Physiological Plantarum 97: 795–803.CrossRefGoogle Scholar
  18. Cogoni, C., and Macino, G., 1997, Isolation of quelling-defective (qde) mutants impaired in post transcriptional transgene-induced gene silencing in Neurospora crassa, Proceedings of the National Academy Sciences 94: 10233–10238.CrossRefGoogle Scholar
  19. Cogoni, C., and Macino, G., 1999, Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase, Nature 399: 166–169.PubMedCrossRefGoogle Scholar
  20. Cogoni, C., and Macino, G., 2000, Post-transcriptional silencing across kingdoms, Current Opinion in Genetics and Development 10: 638–643.Google Scholar
  21. Cooper, A.F. Jr., and Van Gundy, S.D., 1971, Senescence, quiescence and cryptobiosis, in: Plant Parasitic Nematodes, Volume II, B.M. Zuckerman, W.F. Mai and R.A. Rohde, eds., Academic Press, New York and London, pp. 297–318.Google Scholar
  22. Crowe, J.H., and Crowe, L.M., 1992, Membrane integrity in anhydrobiotic organisms: towards a mechanism for stabilizing dry cells, in: Water and Life, G.N. Somerso, C.B. Osmond and C.L. Bolis, eds., Springer Verlag, Berline, Heidelberg, Germany, pp. 87–103.CrossRefGoogle Scholar
  23. Crowe, J.H., Hoekstra, F.A., and Crowe, L.M., 1992, Anhydrobiosis, Annual Review of Physiology 54: 579–599. Daub, J., Loukas, A., Pritchard, D.I., Blaxter, M., 2000, A survey of genes expressed in adults of the human hookworm, Necator americanus, Parasitology 120: 171–184.Google Scholar
  24. Davis, R.E., Parra, A., Loverde, P.T., Eugenia, R., Glorioso, G., and Hodgson, S., 1999, Transient expression of DNA and RNA in parasitic helminthes by using particle bombardment, Proceedings of the National Academy of Sciences America 96: 8687–8692.CrossRefGoogle Scholar
  25. Dix, I., Burnell, A.M., Griffin, C.T., Joyce, S.A., Nugent, M.J., and Downes, M.J., 1992, The identification of biological species in the genus Heterorhabditis (Nematoda: Heterorhabditidae) by cross-breeding second generation amphimictic adults, Parasitiology 104: 509–518.CrossRefGoogle Scholar
  26. Dure, L., 1.993, Plant response to cellular dehydration during environmental stress: structural motifs in LEA proteins, in: Current Topics in Plant Physiology, Vol. 10, T.J. Close and E.A. Bray, eds., American Society of Plant Physiologists, Rockville, MD, pp. 91–103.Google Scholar
  27. Elmayan, T., Balzergue, S., Béon, F., Bourdon, V., Daubremet, J., Guénet, Y., Mourrain, P., Palauqui, J-C., Vemhettes, S., Vial le, T., Wostrikoff, K., and Vaucheret, H., 1998, Arabidopsis mutants impaired in cosuppression, Plant Cell 10: 1747–1758.Google Scholar
  28. Epstein, H.F., and Shakes, D.C., 1995, Caenorhabditis elegans: modem biological analysis of an organism, in: Methods in Cell Biology, H.F. Epstein and D.C. Shakes, eds., Academic Press, San Diego, 654 pp.Google Scholar
  29. Fire, A., 1986, Integrative transformation of Caenorhabditis elegans, The EMBOJournal 5 (10): 2673–2680.Google Scholar
  30. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, G.C., 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391: 806–811.PubMedCrossRefGoogle Scholar
  31. Fodor, A., Vecseri, G., and Farkas, T., 1990, Caenorhabditis elegans as a model for the study of entomopathogenic nematodes, in: Entomopathogenic Nematodes in Biological Control, R. Gaugler and H.K. Kaya, eds., CRC Press, Boca Raton, FL, USA, pp. 249–269.Google Scholar
  32. Fumer, I.J., Sheikh, M.A., and Collett, C.E., 1998, Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation, Genetics 149: 651–662.Google Scholar
  33. Gaugler, R., 1987, Entomogenous nematodes and their prospects for genetic improvement, in: Biotechnology in Invertebrate Pathology and Cell Culture, K. Maramorosch, ed., Academic Press, San Diego, CA. pp. 457–484.CrossRefGoogle Scholar
  34. Gaugler, R., McGuire, T., and Campbell, J., 1989, Genetic variability among strains of the entomopathogenic nematode Steinernema feltiae, Journal ofNematology 21: 247–253.Google Scholar
  35. Gaugler, R., and Kaya, H.K., eds., 1990, Entomopathogenic Nematodes in Biological Control, CRC Press, Boca Raton, FL, USA.Google Scholar
  36. Gaugler, R., and Campbell, J.F., 1991, Selection for enhanced host-fording of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode, Environmental Entomology 20: 700–706.Google Scholar
  37. Gaugler, R., Glazer, I., Campbell, J.F., and Liran, N., 1994, Laboratory and field evaluation of an entomopathogenic nematode genetically selected for improved host-finding, Journal of Invertebrate Pathology 63: 68–73.CrossRefGoogle Scholar
  38. Gaugler, R., and Hashmi, S., 1996, Genetic engineering of an insect parasite, in: Genetic Engineering, Vol. 18, J.K. Setlow, ed., Plenum Press, New York, pp. 135–155.Google Scholar
  39. Glazer, I., Gaugler, R., and Segal, D., 1991, Genetics of the nematode Heterorhabditis bacteriophora strain HP88: The diversity of beneficial traits, Journal ofNematology23: 324–333.Google Scholar
  40. Glazer, I., Koltai, H., Zoni, S., and Segal, D., 1994, Induction and characterization of mutations of Heterorhabditis bacteriophora, in: Genetics of Entomopathogenic Nematode-Bacterium Complex, A.M. Burnell, R-U. Ehlers and J.P. Masson, eds., COST 812 Workshop, Maynooth, Ireland, EUR 15681 EN Report, European Commission, pp 152–163.Google Scholar
  41. Glazer, I., Kozodoi, E., Hashmi, G., and Gaugler, R., 1996, Biological characteristics of the entomopathogenic nematode Heterorhabditis sp. IS-5: a heat tolerant isolate from Israel, Nematologica 42: 481–492.CrossRefGoogle Scholar
  42. Glazer, I., Salame, L., and Segal, D., 1997, Genetic enhancement of nematicide resistance in entomopathogenic nematodes, Biocontrol Science and Technology 7: 499–512.CrossRefGoogle Scholar
  43. Greiner, E., Abadon, M., Brunet, F., Capy, P., and Abad, P., 1999, A mariner-like transposable element in the insect parasite nematode Heterorhabditis bacteriophora, Journal of Molecular Evolution 48: 328–336.CrossRefGoogle Scholar
  44. Grewal, P.S., Tomalak, M., Keil, C.B.O., and Gaugler, R., 1993, Evaluation of a genetically selected strain of Steinernema feltiae against the mushroom sciarid Lycoriella mali, Annals of Applied Biology 123: 695–702.CrossRefGoogle Scholar
  45. Grewal, P.S., Gaugler, R., and Wang, Yi, 1996a, Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection, Annals of Applied Biology 129: 335–341.CrossRefGoogle Scholar
  46. Grewal, P.S., Gaugler, R., and Shupe, C., 1996b, Rapid changes in thermal sensitivity of entomopathogenic nematodes in response to selection temperature extremes, Journal of Invertebrate Pathology 68: 65–73.PubMedCrossRefGoogle Scholar
  47. Griffin, C.T., and Downes, M.J., 1994, Selection of Heterorhabditis sp. for improved infectivity at low temperatures, in: Genetics of Entomopathogenic Nematode-Bacterium Complex, A.M. Burnell, R-U. Ehlers and J.P. Masson, eds., COST 812 Workshop, Maynooth, Ireland, EUR 15681 EN Report, European Commission, pp. 143–151Google Scholar
  48. Hashmi, S., Hashmi, G., and Gaugler, R., 1995, Genetic transformation of an entomopathogenic nematode by microinj ection, Journal of Invertebrate Pathology 66: 293–296.PubMedCrossRefGoogle Scholar
  49. Hashmi, S., Abu Hatab, M.A., and Gaugler, R., 1997, GFP: green fluorescent protein a versatile gene marker for entomopathogenic nematodes, Fundamental of AppliedHematology 20: 323–327.Google Scholar
  50. Hashmi, S., Hashmi, G., Glazer, 1., and Gaugler, R., 1998, Thermal response of Heterohabditis bacteriophora transformed with the Caenorhabditis elegans hsp 70 encoding gene, Journal of Experimental Zoology 281: 164–170.Google Scholar
  51. Hashmi, S., Hashmi, G., and Gaugler, R., 1999, Transformation of nematodes by microinjection, in: Methods and Tools in Biosciences and Medicine Microinjection, J.C. Lacal R.Perona and J.Feramisco, Birkhäuser Verlag, Basel/Switzerland, pp. 233–243.Google Scholar
  52. Henikoff, S., 1992, Detection of Caenorhabditis transposon homologs in diverse organisms, New Biol. 4: 382–388.PubMedGoogle Scholar
  53. Hoekstra, R., Visser, A., Otsen, M., Tibben, J., Lenstra, J.A., and Roos, M.H., 2000, EST sequencing of the parasitic nematode Haemonchus contortus suggests a shift in gene expression during transition to the parasitic stages, Molecular and Biochemical Parasitolology 110: 53–68.CrossRefGoogle Scholar
  54. Hsieh, J., and Fire, A., 2000, Recognition and silencing of repeated DNA, Annual Review of Genetics 34: 187–204.PubMedCrossRefGoogle Scholar
  55. Janke, D.L., Schein, J.E., Ha, T., Franz, N.W., O’Neil, N.J., Vatcher, G.P., Stewart, H.I., Kuervers, L.M., Baillie, D.L., and Rose, A.M., 1997, Interpreting a sequence genome: toward a cosmid transgenic library of Caenorhabditis elegans, Genome Research 7: 974–985.PubMedGoogle Scholar
  56. Johnigk, S.A., and Ehlers, R-U., 1999, Juvenile development and life cycle of Heterorhabditis bacteriophora and H. indica (Nematoda: Heterorhabditidae), Nematology 1 (3): 251–260.CrossRefGoogle Scholar
  57. Kaya, H.K., and Gaugler, R., 1993, Entomopathogenic nematodes, Annual Review of Entomology 38: 181–206.CrossRefGoogle Scholar
  58. Kennerdell, J.R., and Carthew, R.W., 1998, Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway, Cell 95: 1017–1026.PubMedCrossRefGoogle Scholar
  59. Ketting, R.F., Haverkamp, T.H.A., van Luenen, H.G.A.M., and Plasterk, R.H.A., 1999, mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNAseD, Cell 99: 133–141.Google Scholar
  60. Koltai, H., Glazer, I., and Segal, D., 1994, Phenotypic and genetic characterization of two new mutants of Heterorhabditis bacteriophora, Journal of Hematology 26: 32–39.Google Scholar
  61. Koppenhöfer, A.M., and Kaya, H.K., 2002, Entomopathogenic nematodes and insect pest management, in: Advances in Biopesticide Research, Howard Academic Publishers, Reading, U.K.Google Scholar
  62. Kramer, J.M., French, R.P., Park, E-C., and Johnson, J.J., 1990, The Caenorhabitis elegans rol-6 gene, which interacts with sqt-1 collage gene to determine organismal morphology, encodes a collagen, Molecular and Cellular Biology 10: 2081–2089.PubMedGoogle Scholar
  63. Kuwabara, P.E., and Coulson, A., 2000, RNAi-Prospects for a general technique for determining gene function, Parasitology Today 16: 347–349.PubMedCrossRefGoogle Scholar
  64. Lizotte-Waneiwski, M., Tawe, W., Guiliano, D.B., Lu, W., Liu, J., Williams, S.A., and Lustigman, S., 2000, Identification of potential vaccine and drug target candidates by expressed sequence tag analysis and immunoscreening of Onchocerca volvulus larval cDNA libraries, Infect Immun. 68: 3491–3501.CrossRefGoogle Scholar
  65. Lohmann, J.U., Endl, I., and Bosch, T.C.G., 1999, Silencing of developmental genes in Hydra, Devopmental Biology 214: 211–214.CrossRefGoogle Scholar
  66. Maizels, R.M., Tetteh, K.K., and Loukas, A., 2000, Toxocara canis: genes expressed by the arrested infective larval stage of a parasitic nematode, International Journal of Parasitology 30: 495–508.Google Scholar
  67. Mathilde, F., Boutet, S., Morel, J-B., Bellini, C., and Vaucheret, H., 2000, AGOI, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals, Proceedings of the National Academy ofSciences 97: 11650–11654.CrossRefGoogle Scholar
  68. McDowall, J.S., and Rose, A.M., 1997, Genetic analysis of sterile mutants in the dpy-5 unc-13 (I) region of Caenorhabditis elegans, Molecular and General Genetics 255: 60–77.PubMedCrossRefGoogle Scholar
  69. Misquitta, L., and Paterson, B.M., 1999, Targeted disruption of gene function in Drosophilia by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation, Proceedings of the National Academy ofSciences 96: 1451–1456.CrossRefGoogle Scholar
  70. Moerman, D.G., Benian, G.M., Barstead, R.J., Schriefer, L.A., and Waterson, R.H.,1988, Identification and intracellular localization of the unc-22 gene product of Caenorhabditis elegans, Genes and Development 2: 93–105.Google Scholar
  71. Moerman, D.G., and Waterston, R.H., 1989, Mobile elements in Caenorhabditis elegans and other nematodes, in: Mobile DNA, D.E. Berg, and M.M. Howe, eds., American Society of Microbiology, Washington D.C., pp. 537–556.Google Scholar
  72. Mracek, Z., Becvar, S., Kindlmann, P., and Webster, J.M., 1998, Infectivity and specificity of Canadian and Czech isolates of Steinernema kraussei (Steiner, 1923) to some insect pests at low temperatures in the laboratory, Nematologica 44: 437–448.CrossRefGoogle Scholar
  73. Ngo, H., Tschudi, C., Gull, K., and Ullu, E., 1998, Double-stranded RNA induces mRNA degradation in Trypansoma bruci, Proceedings of the National Academy of Sciences 95: 14687–14692.CrossRefGoogle Scholar
  74. Nugent, M.J., and Burnell, A.M., 1994, The cryopreservation of Heterorhabditis, COST 812 Workshop, Maynooth, Ireland, EUR 15681 EN Report, European Commission, pp. 188–189.Google Scholar
  75. O’Leary, S.A., and Burnell, A.M., 1997, The isolation of mutants of Heterorhabditis megidis (Strain UK21 I) with increased desiccation tolerance, Fundamental and Applied Nematology 20: 197–205.Google Scholar
  76. Peters, A., and Ehlers, R-U., 1998, Evaluation and selection for enhanced nematode pathogenicity against Tipula spp., in: Pathogenicity of Entomopathogenic Nematodes Versus Insect Defence Mechanisms: Impact on Selection of Virulent Strains, N. Simöes, N. Boemare and R-U. Ehlers, eds., European Commission Publications, Luxembourg, pp. 225–242.Google Scholar
  77. Plasterk, R.H.A., 1992, Reverse genetics of Caenorhabditis elegans, BioAssays 14: 629–633.CrossRefGoogle Scholar
  78. Plasterk, R.H.A., 1994, The transposon as atool in nematode research, in: Genetics ofEntomopathogenicNematodeBacterium Complex, A.M. Burnell, R-U. Ehlers and J.P. Masson, eds., COST 812 Workshop, Maynooth, Ireland, EUR 15681 EN Report, European Commission, pp 8–13.Google Scholar
  79. Plasterk, R.H.A., and van Luenen, H.G.A.M., 1997, Transposons, in: C. elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer and J.R. Priess, eds., Cold Spring Harbor Laboratory Press, pp. 97–116.Google Scholar
  80. Poinar, G.O. Jr. 1967, Description and taxonomic position of the DDI36 nematode (Steinernematidae, Rhabitoidea) and its relationship to Neoaplectana carpocapsae Weiser, Proceedings of the Helminthological Society of Washington 34: 199–209.Google Scholar
  81. Popiel, I., and Vasquez, E.M., 1991, Cryopreservation of Steinernema carpocapsae and Heterorhabditis bacteriophora, Journal of Nematology 23: 432–437.PubMedGoogle Scholar
  82. Radice, A.R., Bugaj, B., Fitch, D.H.A., and Emmons, S.W., 1994, Widespread occurrence of the Tcl-transposon family: Tc 1-like transposons from telost fish, Molecular and General Genetics 244: 606–612.PubMedGoogle Scholar
  83. Rahimi, F., McGuire, T., and Gaugler, R., 1993, Morphological mutant in the entomopathogenic nematode Heterorhabditis bacteriophora, Journal of Heredity 84: 475–478.PubMedGoogle Scholar
  84. Riddle, D.L., Blumenthal, T., Meyer, B.J., and Priess, J.R., eds., 1997, C. elegans II, Cold Spring Harbor Laboratory Press, 1222 pp.Google Scholar
  85. Robertson, H.M., 1993, The mariner transposable element is widespread in insects, Nature 362: 241–245.PubMedCrossRefGoogle Scholar
  86. Sanchez Alvardo, A., and Newmark, P.A., 1999, Double-stranded RNA specifically disrupts gene expression during planarian regeneration, Proceedings of the National Academy of Sciences 96: 5049–5054.CrossRefGoogle Scholar
  87. Schoppmeier, M., and Damen, W.G.M., 2001, Double-stranded RNA interference in the spider Cupiennius salei: The role of Distal-less is evolutionarily conserved in arthropod appendage formation, Developmental Genes and Evolution 211: 76–82.CrossRefGoogle Scholar
  88. Shapiro, D.I., Glazer, I., and Segal, D., 1997, Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization, Biological Control 8: 153–159.CrossRefGoogle Scholar
  89. Sharp, P.A., and Zamore, P.D., 2000, RNA Interference, Science 287: 2431–2433.PubMedCrossRefGoogle Scholar
  90. Sharp, P.A., 2001, RNA interference-200I, Genes and Development 15: 485–490.PubMedCrossRefGoogle Scholar
  91. Sihavy, T.J., and Beckwith, J.R., 1985, Use of lac fusions for the study of biological problems, Microbiology Review 49: 398–418.Google Scholar
  92. Stinchcomb, D.T., Shaw J.E., Carr, S.H., and Hirsh, D., 1985, Extrachromosomal DNA transformation of Caenorhabditis elegans, Molecular and Cellular Biology 5: 3484–3496.PubMedGoogle Scholar
  93. Strauch, O., Stoessel, S., and Ehlers, R-U., 1994, Culture conditions define automictic or amphimictic reproduction in entomopathogenic rhabditid nematodes of the genus Heterorhabditis, Fundamental and Applied Nematology 17: 575–582.Google Scholar
  94. Solomon, A., Solomon, R., Paperna, I., and Glazer, I., 2000, Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein, Parasitology 121: 409–416.PubMedCrossRefGoogle Scholar
  95. Tabara, H., Grishok, A., and Mello, G.C., 1998, RNA in C. elegans: Soaking in the genome sequence, Science 282: 430–431.PubMedCrossRefGoogle Scholar
  96. Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A., and Driscoll, M., 2000, Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes, Nature Genetics 24: 180–183.PubMedCrossRefGoogle Scholar
  97. The C. elegans Sequencing Consortium, 1998, Genome sequence of the nematode C. elegans a platform for investigating biology, Science 282: 2012–2018.Google Scholar
  98. The Filarial genome Project 1999, Deep within the filarial genome: progress of the filarial genome project, Parasitology Today 15: 219–224.CrossRefGoogle Scholar
  99. Thomas, G.M., and Poinar, G.O. Jr., 1979, Xenorhabdus gen.nov., a genus, of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae, International Journal of Systematic Bacteriology 29: 352–360.CrossRefGoogle Scholar
  100. Timmons, L., and Fire, A., 1998, Specific interference by ingested dsRNA, Nature 395: 854.PubMedCrossRefGoogle Scholar
  101. Tomalak, M., 1994a, Selective breeding of Steinernema feltiae (Filipjev) (Nematode Steinernematidae) for improved efficacy in control of mushroom fly Lycoriella solani Winnertz (Diptera: Sciaridae), Biocontrol Science and Technology 4: 187–198.CrossRefGoogle Scholar
  102. Tomalak, M., 1994b, Phenotypic and genetic characterization of dumpy infective juvenile mutant in Steinernema feltiae (Rhabditidae: Steinernematidae), Fundamental and Applied Nematology 17: 485–495.Google Scholar
  103. Tomalak, M., 1999, Analysis of Steinernema feltiae mutants, in: Cost 819- Entomopathogenic Nematodes: Genetic and Molecular Biology of Entomopathogenic Nematodes, Proceedings held at the Centre de Rechrches Agronomiques de Provence-Alpes-Cote d’Azur Institut National de la Recherche Agronomique, Antibes, France, 1 to 5 April, 1997, Directorate-General for Science, Research and Development, Commission of the European Community, Brussels, Belgium 22: 125–134.Google Scholar
  104. Vellai, T., Molnar, A., Laktos, L., Banfalvi, Z., Fodor, A., and Saringer, G., 1999, Transgenic nematodes carrying a cloned stress gene from yeast, in: Survival of Entomopathogenic Nematodes, I. Glazer, P. Richardson, N. Boemare and F. Coudert, eds., European Commission Publication, Luxembourg, pp. 105–119.Google Scholar
  105. Vos, J.C., and Plasterk, R.H.A., 1994, Tcl transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain, EMBO J. 13: 6125–6132.PubMedGoogle Scholar
  106. Wang, Y., Gaugler, R., and Cui, L., 1994, Variations in immune response ofPopillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species, Journal ofNematology 26: 11–18.Google Scholar
  107. Wang, Y., Campbell, J.F., and Gaugler, R., 1995, Infection of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophoria against Popillia japonica (Coleoptera: Scarabaeidae) larvae, Journal of Invertebrate Pathology 66: 178–184.CrossRefGoogle Scholar
  108. Wang, Y., and Gaugler, R., 1999, Steinernema glaseri surface coat protein suppresses the immune response of Popillia japonica (Coleoptera: Sacarabaeidae) larvae, Biological Control 14: 45–50.Google Scholar
  109. Waterson, R.H., Sulston, J.E., and Coulson, A.R., 1997, The Genome, in: C. elegans II, D.L. Riddle, T. Blumenthal, B.J. Meyer and J.R. Priess, eds., Cold Spring Harbor Laboratory Press, pp. 23–46.Google Scholar
  110. Wargelius, A., Ellingsen, S., and Fjose, A., 1999, Double-stranded RNA induces specific developmental defects in zebrafish embryos, Biochem. Biophys. Res. Commun. 263: 156–161.PubMedCrossRefGoogle Scholar
  111. Wianny, F., and Zernicka-Goetz, M., 2000, Specific interference with gene function by double-stranded RNA in early mouse development, Nature Cell Biology 2: 70–75.PubMedCrossRefGoogle Scholar
  112. Wicks, S.R., de Vries, C.J., van Luenen, H.G.A.M., and Plasterk, R.H.A., 2000, CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans, Developmental Biology 221: 295–307.PubMedCrossRefGoogle Scholar
  113. Williams, S.A., and Johnstone, D.A., 1999, Helminth genome analysis: the current status of the filarial and Schistosome genome projects, Parasitology 118: S19–S38.PubMedCrossRefGoogle Scholar
  114. Womersley, C.Z., 1981, Biochemical and physiological aspects ofanhydrobiosis, Comparative Biochemistry and Physiology 70B: 669–678.Google Scholar
  115. Womersley, C., 1987, A reevaluation of strategies employed by nematode anhydrobiotes in relation to their natural environment, in: Vistas on Nematology, J. Veech and D.W. Dickson, eds., A commemoration of the 25th Anniversary of the Society ofNematology, Hyattsville, MD, Society of Nematology, pp. 165–173.Google Scholar
  116. Wood, W.B. ed., 1988, The nematode Caenorhabditis elegans, Cold Spring Harbor Labortory Press, New York, 667 pp.Google Scholar
  117. Womersley, C.Z., 1990, Dehydration survival and anhydrobiotic potential, in: Entomopathogenic Nematodes in Biological Control, R. Gaugler, and H.K. Kaya, eds., CRC Press, Boca Raton, FL, USA, pp. 117–137.Google Scholar
  118. Zioni, S., Glazer, I., and Segal, D., 1991, Life cycle and reproductive potential of the nematode Heterorhabditis bacteriophora strain HP88, Journal ofNematology 24: 352–358.Google Scholar
  119. Zioni, S., Glazer, I., and Segal, D., 1992, Phenotypic and genetic analysis of a mutant Heterorhabaditis bacteriophora strain HP88, Journal of Nematology 24: 359–364.Google Scholar
  120. Zitmann-Gal, T., Solomon, A., Glazer, I., and Koltai, H., 2002, Reduction in the levels of glycogen synthase transcripts during desiccation in the insect-killing, desiccation tolerant nematode Steinernema feltiae IS-6, Journal of Parasitology 87: 725–735.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Christopher W. Brey
    • 1
  • Sarwar Hashmi
    • 2
  1. 1.Department of EntomologyRutgers UniversityNew BrunswickUSA
  2. 2.Lindsley F. Kimble Research InstituteNew York Blood CenterNew YorkUSA

Personalised recommendations