Basic Proteins of Central and Peripheral Nervous System Myelin

  • Patrick R. Carnegie
  • Peter R. Dunkley

Abstract

Studies on the ultrastructure and physiological function of myelin have generally been with peripheral nervous system (PNS) tissue, while chemical studies on the composition of myelin have more often used central nervous system (CNS) tissue. In addition, because of immunological studies on multiple sclerosis, there has been a rapid growth in knowledge of some of the proteins of CNS myelin.

Keywords

Peripheral Nervous System Myelin Basic Protein Basic Protein Myelin Protein Central Nervous System Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C. W. M., Bayliss, O. B., Hallpike, J. F., and Turner, D. R., 1971, Histochemistry of myelin, XII, anionic staining of myelin basic proteins for histology, electrophoresis and electron microscopy, J. Neurochem. 18: 389–394.PubMedCrossRefGoogle Scholar
  2. Adams, C. W. M., 1972, in Research on Multiple Sclerosis (C. W. M. Adams and U. Leibowitz, eds.), pp. 19–60, Charles C. Thomas, Illinois.Google Scholar
  3. Adams, D. H., and Osborne, J., 1973, A developmental study of the relationship between the protein components of rat CNS myelin, Neurobiology 3: 91–112.PubMedGoogle Scholar
  4. Agrawal, H. C, Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M., 1970, The identity of a myelin-like fraction isolated from developing brain, Biochem. 7.120: 635–642.Google Scholar
  5. Agrawal, H. C, Banik, N. L., Bone, A. H., Cuzner, M. L., Davison, A. N., and Mitchell, R. F., 1971, The chemical composition of dogfish myelin, Biochem. J. 124: 70P.Google Scholar
  6. Agrawal, H. C, Burton, R. M., Fishman, M. A., Mitchell, R. F., and Prensky, A. L., 1972, Partial characterization of a new myelin protein component, J. Neurochem. 19: 2083–2089.PubMedCrossRefGoogle Scholar
  7. Agrawal, H. C, Trotter, J. L., Mitchell, R. F., and Burton, R. M., 1973, Criteria for identifying a myelin-like fraction from developing brain, Biochem. J. 136: 1117–1119.PubMedGoogle Scholar
  8. Alvord, E. C, Jr., 1970, Acute disseminating encepholomyelitis and “allergic” neuro-encephal-opathies, in Handbook of Clinical Neurology (P. J. Viken and G. W. Bruyn, eds.), Vol. 9, pp. 500–571, North-Holland Publ. Co., Amsterdam.Google Scholar
  9. Anthony, J. S., and Moscarello, M. A., 1971, A conformation change induced in the basic encephalitogen by lipids, Biochim. Biophys. Acta 243: 429–433.PubMedCrossRefGoogle Scholar
  10. Baldwin, G. S., and Carnegie, P. R., 1971a, Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin, Science 171: 579–581.PubMedCrossRefGoogle Scholar
  11. Baldwin, G. S., and Carnegie, P. R., 1971b, Isolation and partial characterization of methylated arginines from the encephalitogenic basic protein of myelin, Biochem. J. 123: 69–74.PubMedGoogle Scholar
  12. Banik, N. L., and Davison, A. N., 1969, Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain, Biochem. J. 115: 1051–1062.PubMedGoogle Scholar
  13. Banik, N. L., and Davison, A. N., 1973, Isolation of purified basic protein from human brain, J. Neurochem. 21: 489–494.PubMedCrossRefGoogle Scholar
  14. Bear, R. S., 1971, The structure of the myelin sheath, Neurosciences Res. Prog. Bull. 9: 507–598.Google Scholar
  15. Bencina, B., Carnegie, P. R., McPherson, T. A., and Robson, G., 1969, Encephalitogenic basic protein from sciatic nerve, FEBS Letters 4: 9–12.PubMedCrossRefGoogle Scholar
  16. Bergstrand, H., 1971, Isolation and partial characterization of some proteolytically and chemically derived fragments of bovine encephalitogenic protein, Eur. J. Biochem. 21: 116–124.PubMedCrossRefGoogle Scholar
  17. Bergstrand, H., 1972, Encephalitogenic activity in rabbits of the C-terminal region of bovine basic myelin protein: Localization to two different regions, FEBS Letters 23: 195–198.PubMedCrossRefGoogle Scholar
  18. Bergstrand, H., and Kallen, B., 1973a, Is there a cross-reactivity between different parts of the bovine encephalitogenic protein in the macrophage migration inhibition assay? Immunochemistry 10: 471 – 476.PubMedCrossRefGoogle Scholar
  19. Bergstrand, H., and Kallen, B., 19736, Antigenic determinants on bovine encephalitogenic protein: Studies in rabbits with derivatives of fragment 1–43 and the lymph node cell transformation test, Neurobiology 3: 246–255.PubMedGoogle Scholar
  20. Block, R. E., Brady, A. H., and Joffe, S., 1973, Conformation and aggregation of bovine myelin proteins, Biochem. Biophys. Res. Commun. 54: 1595–1602.PubMedCrossRefGoogle Scholar
  21. Braun, P. E., and Barchi, R. L., 1972, 2’, 3’-Cyclic nucleotide 3’-phosphodiesterase in the nervous system: Electrophoretic properties and developmental studies, Brain Res. 40: 437 – 444.PubMedCrossRefGoogle Scholar
  22. Brostoff, S., and Eylar, E. H., 1971, Localization of methylated arginine in the A1 protein from myelin, Proc. Nat. Acad. Sci. (U.S.A.) 68: 765–769.CrossRefGoogle Scholar
  23. Brostoff, S. W., and Eylar, E. H., 1972, The proposed amino acid sequence of the P1 protein of rabbit sciatic nerve myelin, Arch. Biochem. Biophys. 153: 590–598.PubMedCrossRefGoogle Scholar
  24. Brostoff, S., Burnett, P., Lampert, P., and Eylar, E. H., 1972, Isolation and characterization of a protein from sciatic nerve myelin responsible for experimental allergic neuritis, Nature (New Biol.) 235: 210–212.Google Scholar
  25. Brostoff, S. W., Wisneiwski, H. M., Greenfield, S., Morell, P., and Eylar, E. H., 1973, Immunopathologic response in guinea pigs sensitized with peripheral nervous system myelin, Brain. Res. 58: 500–505.PubMedCrossRefGoogle Scholar
  26. Brostoff, S. W., Reuter, W., Hichens, M., and Eylar, E. H., 1974, Specific cleavage of the Al protein from myelin with cathepsin D, J. Biol. Chem. 249: 559–567.PubMedGoogle Scholar
  27. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiological Reviews 48: 197–251.PubMedGoogle Scholar
  28. Burnett, P. R., and Eylar, E. H., 1971, Allergic encephalomyelitis. Oxidation and cleavage of the single tryptophan residue of the A! protein from bovine and human myelin, J. Biol..Chem. 246: 3425–3430.Google Scholar
  29. Carnegie, P. R., 1969, N-terminal sequence of an encephalitogenic protein from human myelin, Biochem. J. 111 : 240–242.PubMedGoogle Scholar
  30. Carnegie, P. R., 1971a, Amino acid sequence of the encephalitogenic basic protein of human myelin, Biochem. J. 123: 57–67.PubMedGoogle Scholar
  31. Carnegie, P. R., 19716, Properties, structure and possible neuroreceptor role of the encephalitogenic protein of human brain, Nature (London) 229: 25–28.CrossRefGoogle Scholar
  32. Carnegie, P. R., 1974, Interaction of 5-hydroxytryptamine with the encephalitogenic protein of myelin, in Neurosciences Third Study Program (F. O. Schmitt and G. Wordin, eds.), pp. 925–928, MIT Press, Cambridge.Google Scholar
  33. Carnegie, P. R., and Sims, N. R., 1975, Properties of myelin proteins and enzymes and their possible role in multiple sclerosis, in Current Studies in Multiple Sclerosis (E. J. Field, ed.), Medical and Technical Publishing Co., Oxford, England, in preparation.Google Scholar
  34. Carnegie, P. R., Bencina, B., and Lamoureux, G., 1967, Experimental allergic encephalomyelitis, Biochem. 7.105: 559–568.Google Scholar
  35. Carnegie, P. R., Symthies, J. R., Caspary, E. A., and Field, E. J., 1972, Interaction of hallucinogenic drugs with encephalitogenic protein of myelin, Nature (London) 240: 561–563.CrossRefGoogle Scholar
  36. Carnegie, P. R., Kemp, B. E., Dunkley, P. R., and Murray, A. W., 1973, Phosphorylation of myelin basic protein by a cyclic AMP-dependent protein kinase, Biochem. J. 135: 589–591.Google Scholar
  37. Carnegie, P. R., Dunkley, P. R., Kemp, B. E., and Murray, A. W., 1974, Phosphorylation of selected serine and threonine residues in myelin basic protein by endogenous and exogenous protein kinases, Nature (London) 249: 147–150.CrossRefGoogle Scholar
  38. Caspary, E. A., and Field, E. J., 1965, An encephalitogenic protein of human origin: some chemical and biological properties, Ann. N.Y. Acad. Sci. 122: 182–198.PubMedCrossRefGoogle Scholar
  39. Chao, L. P., and Einstein, E. R., 1969, Estimation of molecular weight of flexible disordered proteins by exclusion chromatography, J. Chromatography 42: 485–492.CrossRefGoogle Scholar
  40. Chao, L. P., and Einstein, E. R., 1970, Physical properties of the encephalitogenic protein: Molecular weight and conformation, J. Neurochem. 17: 1121–1132.PubMedCrossRefGoogle Scholar
  41. Csejtey, J., Hallpike, J. F., Adams, C. W. M., and Bayliss, O. B., 1972, Histochemistry of myelin. XIV. Peripheral nerve myelin proteins: Electrophoretic and histochemical correlations, J. Neurochem. 19: 1931–1935.PubMedCrossRefGoogle Scholar
  42. Daile, P., and Carnegie, P. R., 1975, Sites of phosphorylation by cyclic AMP-dependent protein kinases, in preparation.Google Scholar
  43. Davison, A. N., 1961, Metabolically inert proteins of the central and peripheral nervous system, muscle, and tendon, Biochem. J. 78: 272–282.PubMedGoogle Scholar
  44. Davison, A. N., 1970, The biochemistry of the myelin sheath, in Myelination (A. N. Davison and A. Peters, eds.), pp. 80–161, Charles C. Thomas, Illinois.Google Scholar
  45. Davison, A. N., 1971, The biochemistry of myelinogenesis in the central nervous system, in Chemistry and Brain Development (R. Paoletti and A. N. Davison, eds.), pp. 375–380, Plenum Press, New York.CrossRefGoogle Scholar
  46. Dayhoff, M. D., 1972, in Atlas of Protein Sequence and Structure, Vol. 5, National Biochemical Research Foundation, Silver Spring, Md.Google Scholar
  47. Deibler, G. E., and Martenson, R. E., 1973a, Chromatographic fractionation of myelin basic protein: Partial characterization and methylarginine contents of the multiple forms, J. Biol. Chem. 248: 2392–2396.PubMedGoogle Scholar
  48. Deibler, G. E., and Martenson, R. E., 19736, Determination of methylated basic amino acids with the amino acid analyser: Application to total acid hydrolysates of myelin basic proteins, J. Biol. Chem. 248: 2387–2391.PubMedGoogle Scholar
  49. Deibler, G. E., Martenson, R. E., and Kies, M. W., 1970, Gel filtration of proteins at acid pH application to molecular weight estimation of myelin basic proteins, Biochim. Biophys. Acta 200: 342–352.PubMedCrossRefGoogle Scholar
  50. Deibler, G. E., Martenson, R. E., and Kies, M. W., 1972, Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species, Prep. Biochem. 2: 139–165.PubMedCrossRefGoogle Scholar
  51. Demel, R. A., London, Y., Geurts Van Kessel, W. S., Vossenberg, F. G., and Deenen, L. L. Van, 1973, The specific interaction of myelin basic protein with lipids at the air-water interface, Biochim. Biophys. Acta 311: 507–519.PubMedCrossRefGoogle Scholar
  52. Dickinson, J. P., Jones, K. M., Aparicio, S. R., and Lumsden, C. E., 1970, Localization of encephalitogenic basic protein in the intraperiod line of lamellar myelin, Nature (London) 227: 1133–1134.CrossRefGoogle Scholar
  53. D’Monte, B., Mela, P., and Marks, N., 1971, Metabolic instability of myelin protein and proteo- lipid fractions, Eur. J. Biochem. 23: 355–365.PubMedCrossRefGoogle Scholar
  54. Driscoll, B. F., Kramer, A. J., and Kies, M. W., 1974, Myelin basic protein: location of multiple independent antigenic regions, Science 184: 73–75.PubMedCrossRefGoogle Scholar
  55. Dunkley, P. R., and Carnegie, P. R., 1974a, Isolation of myelin basic proteins, in Research Methods in Neurochemistry (N. Marks and R. Rodnight, eds.), Vol. 2, pp. 219–245, Plenum Press, New York.CrossRefGoogle Scholar
  56. Dunkley, P. R., and Carnegie, P. R., 1974b, Sequence of a rat myelin basic protein, Biochem. 7.141: 243–255.Google Scholar
  57. Dunkley, P. R., Coates, A. S., and Carnegie, P. R., 1973, Encephalitogenic activity of peptides from the smaller basic protein of rat brain myelin, J. Immunol. 110: 1699–1701.PubMedGoogle Scholar
  58. Einstein, E. R., 1972, Basic protein of myelin and its role in experimental allergic encephalomyel itis and multiple sclerosis, Handbook of Neurochemistry 7: 107–129.CrossRefGoogle Scholar
  59. Einstein, E. R., 1974, Protein and enzyme changes with brain development, in Drugs and the Developing Brain (A. Vernadakis and N. Weiner, eds.), pp. 375–393, Plenum Press, New York.CrossRefGoogle Scholar
  60. Einstein, E. R., Csejtey, J., Davis, W., and Rauch, M., 1965, Studies on encephalitogenic protein of human brain origin, Proc. 8th Int. Cong. Neurol. 4: 137–153.Google Scholar
  61. Einstein, E. R., Csejtey, J., and Marks, N., 1968, Degradation of encephalitogen by purified brain acid proteinase, FEBS Letters 1: 191–195.PubMedCrossRefGoogle Scholar
  62. Einstein, E. R., Dalai, K. B., and Csejtey, J., 1970, Biochemical maturation of the central nervous system. II. Protein and proteolytic enzyme changes, Brain Res. 18: 35–49.PubMedCrossRefGoogle Scholar
  63. Einstein, E. R., Csejtey, J., Dalai, K. B., Adams, C. W. M., Bayliss, O. B., and Hallpike, J. F., 1972, Proteolytic activity and basic protein loss in and around multiple sclerosis plaques: Combined biochemical and histochemical observations, J. Neurochem. 19: 653–662.PubMedCrossRefGoogle Scholar
  64. Eng, L. F., Chao, F. C, Gerstl, B., Pratt, D., and Tavaststjerna, M. G., 1968, The Maturation of human white matter myelin: Fractionation of the myelin membrane proteins, Bio chemistry 7: 4455–4465.Google Scholar
  65. Epand, R. M., Moscarello, M. A., Zierenberg, B., and Vail, W. J., 1974, The folded conformation of the encephalitogenic protein of human brain, Biochemistry 13: 1264–1267.PubMedCrossRefGoogle Scholar
  66. Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem. 21: 329–334.PubMedCrossRefGoogle Scholar
  67. Eylar, E. H., 1970, Amino acid sequence of the basic protein of myelin membrane, Proc. Nat. Acad. Sci. (U.S.A.) 67: 1425–1431.CrossRefGoogle Scholar
  68. Eylar, E. H., 1972, The structure and immunologic properties of basic proteins of myelin, Ann. N.Y. Acad. Sci. 195: 481–491.PubMedCrossRefGoogle Scholar
  69. Eylar, E. H., 1973, Myelin-specific proteins, in Proteins of the Nervous System (D. J. Schneider, R. H. Angeletti, R. A. Bradshaw, A. Grasso, and B. W. Moore, eds.), pp. 27–44, Raven Press, New York.Google Scholar
  70. Eylar, E. H., and Thompson, M., 1969, Allergic encephalomyelitis: The physicochemical properties of the basic protein encephalitogen from bovine spinal cord, Arch. Biochem. Biophys. 129: 468–479.PubMedCrossRefGoogle Scholar
  71. Eylar, E. H., Salk, J., Beveridge, G. C, and Brown, L. V., 1969, Experimental allergic encephalomyelitis: An encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys. 132: 34–48.PubMedCrossRefGoogle Scholar
  72. Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J., and Burnett, P., 1971, Basic A1 protein of the myelin membrane: The complete amino acid sequence, J. Biol. Chem. 246: 5770–5784.PubMedGoogle Scholar
  73. Eylar, E. H., Brostoff, S., Jackson, J., and Carter, H., 1972, Allergic encephalomyelitis in monkeys induced by a peptide from the Al protein. Proc. Nat. Acad. Sci. (U.S.A.) 69: 617 – 619.CrossRefGoogle Scholar
  74. Finch, P. R., and Moscarello, M. A., 1972, A myelin protein fraction extracted with thioethanol, Brain Res. 42: 177–187.PubMedCrossRefGoogle Scholar
  75. Fischer, C. A., and Morell, P., 1974a, Turnover of proteins in myelin and myelin-like material of mouse brain, Brain Res. 74: 51–65.PubMedCrossRefGoogle Scholar
  76. Fischer, C. A., and Morell, P., 19746, Precursor dependent turnover measures of proteins in myelin and myelin-like material during development, Society for Neuroscience (Abstract).Google Scholar
  77. Folch-Pi, J., 1972, Proteolipids, in Functional and Structural Proteins of the Nervous System (A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 171–199, Plenum Press, New York.CrossRefGoogle Scholar
  78. Gaitonde, M. K., and Martenson, R. E., 1970, Metabolism of highly basic proteins of rat brain during postnatal development, J. Neurochem. 17: 551–563.PubMedCrossRefGoogle Scholar
  79. Giorgi, P. P., Karlsson, J. O., Sjostrand, J., and Field, E. J., 1973, Axonal flow and myelin protein in the optic pathway, Nature (London) 244: 121–124.Google Scholar
  80. Gonzalez-Sastre, F., 1970, The protein composition of isolated myelin, J. Neurochem. 17: 1049 – 1056.PubMedCrossRefGoogle Scholar
  81. Gould, R. M., and London, Y., 1972, Specific interaction of central nervous system myelin basic protein with lipids: Effects of basic protein on glucose leakage from liposomes, Biochim. Biophys. Acta 290: 200–218.PubMedCrossRefGoogle Scholar
  82. Greenfield, S., Norton, W. T., and Morell, P., 1971, Quaking mouse: Isolation and characterization of myelin protein, J. Neurochem. 18: 2119–2128.PubMedCrossRefGoogle Scholar
  83. Greenfield, S., Brostoff, S., Eylar, E. H., and Morell, P., 1973, Protein composition of myelin of the peripheral nervous system, J. Neurochem. 20: 1207–1216.PubMedCrossRefGoogle Scholar
  84. Hagopian, A., and Eylar, E. H., 1968, Glycoprotein biosynthesis: Studies on the receptor specificity of the polypeptidyl N-acetylgalactosaminyl transferase from bovine submaxillary glands, Arch. Biochem. Biophys. 128: 422–433.PubMedCrossRefGoogle Scholar
  85. Hagopian, A., Westall, F. C, Whitehead, J. S., and Eylar, E. H., 1971, Glycosylation of the Al protein from myelin by a polypeptide N-acetylgalactosaminyl transferase: Identification of the receptor sequence, J. Biol. Chem. 246: 2519–2523.PubMedGoogle Scholar
  86. Hashim, G. A., and Eylar, E. H., 1969a, Allergic encephalomyelitis: Isolation and characterization of encephalitogenic peptides from the basic protein of bovine spinal cord, Arch. Biochem. Biophys. 129: 645–654.PubMedCrossRefGoogle Scholar
  87. Hashim, G. A., and Eylar, E. H., 19696, The structure of the terminal regions of the encephalitogenic A1 protein, Biochem. Biophys. Res. Comm. 34: 770–776.PubMedCrossRefGoogle Scholar
  88. Hashim, G. A., Hwang, F., and Schilling, F. J., 1973, Experimental allergic encephalomyelitis: Basic protein regions responsible for delayed hypersensitivity, Arch. Biochem. Biophys. 156: 298–309.PubMedCrossRefGoogle Scholar
  89. Hergstrand, L. R., and Kornguth, S. E., 1973, Isolation and partial characterization of the myelin basic protein from foetal calf brains, Biochim. Biophys. Acta 317: 380–393.CrossRefGoogle Scholar
  90. Herndon, R. M., Rauch, H. C, and Einstein, E. R., 1973, Immuno-electron microscopic localization of the encephalitogenic basic protein in myelin, Immunol. Commun. 2: 163 – 172.PubMedGoogle Scholar
  91. Hulcher, F., Spudis, E., and Netsky, M. G., 1963, Encephalomyelitis induced by the white matter fraction, Arch. Neurol. (Chic.) 8: 1–7.CrossRefGoogle Scholar
  92. Jones, G., and Carnegie, P. R., 1974, Methylation of myelin basic protein by enzymes from rat brain, J. Neurochem. 23: 1231–1237.PubMedCrossRefGoogle Scholar
  93. Kabat, E. A., Wolf, A., and Bozer, A. E., 1947, The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterogeneous and homologous brain tissue with adjuvants, J. Exptl. Med. 85: 117–131.CrossRefGoogle Scholar
  94. Kibler, R. F., Fox, R. H., and Shapira, R., 1964, Isolation of a highly purified encephalitogenic protein from bovine cord, Nature (London) 204: 1273–1275.CrossRefGoogle Scholar
  95. Kibler, R. F., Re, P. K., McKneally, S., and Shapira, R., 1972, Biological activity of an encephalitogenic fragment in the monkey, J. Biol. Chem. 247: 969–972.PubMedGoogle Scholar
  96. Kies, M. W., 1965, Chemical studies on an encephalitogenic protein from guinea pig brain, Ann. N.Y. Acad. Sci. 122: 161–170.CrossRefGoogle Scholar
  97. Kies, M. W., 1973, Experimental allergic encephalomyelitis, in Biology of Brain Dysfunction (G. E. Gaul, ed.), Vol. II, pp. 185–224, Plenum Press, New York.CrossRefGoogle Scholar
  98. Kies, M. W., and Alvord, E. C, Jr., 1959, Encephalitogenic activity in guinea pigs of water soluble protein fractions of nervous tissue, in Allergic Encephalomyelitis (M. W. Kies, and E. C. Alvord, Jr., eds.), pp. 293–299, Charles C. Thomas, Illinois.Google Scholar
  99. Kies, M. W., Gordon, S., Laatsch, R. H., and Alvord, E. C., Jr., 1961, Cellular localization of allergic encephalomyelitic activity in guinea pig brain, in Proceedings International Congress of Neuropathology (H. Jacob, ed.), pp. 20–29, Georg Thieme Verlag, Stuttgart.Google Scholar
  100. Kies, M. W., Thompson, E. B., and Alvord, E. C, Jr., 1965, The relationship of myelin proteins to experimental allergic encephalomyelitis, Ann. N.Y. Acad. Sci. 122: 148–160.PubMedCrossRefGoogle Scholar
  101. Ko, G. K. W., and Raghupathy, E., 1972, Glycoprotein biosynthesis in the developing rat brain. II. Microsomal galactosaminyl transferase utilizing endogenous and exogenous protein acceptors, Biochim. Biophys. Acta 264: 129–143.PubMedCrossRefGoogle Scholar
  102. Kornguth, S. E., and Perrin, J. H., 1971, Circular dichroism and viscometric studies on a basic protein from pig brain, J. Neurochem. 18: 983–988.PubMedCrossRefGoogle Scholar
  103. Kornguth, S. E., Kozel, L. R., and Smithies, O., 1972, Tissue specific histone, probable identity with encephalitogenic protein, Nature (New Biol.) 237: 49–50.CrossRefGoogle Scholar
  104. Krigbaum, W. R., and Knutton, S. P., 1973, Prediction of the amount of secondary structure in a globular protein from its amino acid composition, Proc. Nat. Acad. Sci. (U.S.A.) 70: 2809 – 2813.CrossRefGoogle Scholar
  105. Laatsch, R. H., Kies, M. W., Gordon, S., and Alvord, E. C, Jr., 1962, The encephalitogenic activity of myelin isolates by ultracentrifugation, J. Exptl. Med. 115: 777–788.CrossRefGoogle Scholar
  106. Lajtha, A., and Marks, N., 1971, Protein turnover, Handbook of Neurochemistry 5B: 551–630.Google Scholar
  107. Leach, S. J., and Smith, J. A., 1972, Thermal perturbation difference spectroscopy of proteins, Int. J. Protein Research, 4: 11–19.CrossRefGoogle Scholar
  108. Lennon, V. A., 1972, Cellular and humoral immune responses in experimental autoimmune encephalomyelitis, Ph.D. Thesis, Melbourne University.Google Scholar
  109. Lennon, V. A., Wilks, A. V., and Carnegie, P. R., 1970, Immunologic properties of the main encephalitogenic peptide from the basic protein of human myelin, J. Immunol. 10: 1223–1230.Google Scholar
  110. Lim, L., White, J. O., Hall, C, Berthold, W., and Davison, A. N., 1974, Isolation of microsomal poly(A)-RNA from rat brain directing the synthesis of the myelin encephalitogenic protein in Xenopus oocytes, Biochim. Biophys. Acta 361: 241–247.PubMedCrossRefGoogle Scholar
  111. London, Y., 1971, Ox peripheral nerve myelin membrane: Purification and partial characterization of two basic proteins, Biochim. Biophys. Acta 249: 188–196.PubMedCrossRefGoogle Scholar
  112. London, Y., 1972, Preparation of purified myelin from ox intradural spinal roots by rateisopyenic zonal centrifugation, Biochim. Biophys. Acta 282: 195–204.PubMedCrossRefGoogle Scholar
  113. London, Y., and Vossenberg, F. G. A., 1973, Specific interaction of central nervous system myelin basic protein with lipids: Specific regions of the protein sequence protected from proteolytic action of trypsin, Biochim. Biophys. Acta 307: 478–490.PubMedCrossRefGoogle Scholar
  114. London, Y., Demel, R. A., Geurts Van Kessel, W. S., Vossenberg, F. G., and Deenen, L. L. Van, 1973, The protection of A1 myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids at the air-water interface, Biochim. Biophys. Acta 311: 520–530.PubMedCrossRefGoogle Scholar
  115. London, Y., Demel, R. A., Geurts Van Kessel, W. S., Zahler, P., and Deenen, L. L. Van, 1974, The interaction of the “Folch-Lees” protein with lipids at the air-water interface, Biochim. Biophys. Acta 332: 69–84.CrossRefGoogle Scholar
  116. Lumsden, C. E., Robertson, D. M., and Blight, R., 1966, Chemical studies on experimental allergic encephalitogenic “antigens,” J. Neurochem. 13: 127–162.PubMedCrossRefGoogle Scholar
  117. Lycke, E., and Roos, B.-E., 1973, Brain monoamines in guinea pigs with experimental allergic encephalomyelitis, Int. Arch. Allergy 45: 341–351.PubMedCrossRefGoogle Scholar
  118. McFarland, H. F., 1970, Immunofluorescent study of circulating antibody in experimental allergic encephalomyelitis, Proc. Soc. Exptl. Biol. Med. 133: 1195–1200.Google Scholar
  119. McFarlin, D. E., Blank, S. E., Kibler, R. F., McKneally, S., and Shapira, R., 1973, Experimental allergic encephalomyelitis in the rat: Response to encephalitogenic proteins and peptides, Science 179: 478–480.PubMedCrossRefGoogle Scholar
  120. Mackay, I. R., Carnegie, P. R., and Coates, A. S., 1973, Immunopathological comparisons between experimental autoimmune encephalomyelitis and multiple sclerosis: A review, Clin. Exp. Immunol. 15: 471–482.PubMedGoogle Scholar
  121. Mandel, P., Nussbaum, J. L., Neskovic, N. M., Sarlieve, L. L., and Kurihara, T., 1972, Regulation of myelinogenesis, Advances in Enzyme Regulation 10: 101–117.PubMedCrossRefGoogle Scholar
  122. Marks, N., and Lajtha, A., 1965, Separation of acid and neutral proteinases in brain, Biochem. 7.97: 74–83.Google Scholar
  123. Marks, N., and Lajtha, A., 1971, Protein and polypeptide breakdown, Handbook of Neuro- chemistry 5A : 49–140.Google Scholar
  124. Martenson, R. E., Deibler, G. E., and Kies, M. W., 1970, Myelin basic proteins of the rat central nervous system, Biochim. Biophys. Acta 200: 353–362.PubMedCrossRefGoogle Scholar
  125. Martenson, R. E., Deibler, G. E., and Kies, M. W., 1971a, The occurrence of two myelin basic proteins in the central nervous system of rodents in the suborders Myomorpha and Sciuromorpha, J. Neurochem. 18: 2427–2433.CrossRefGoogle Scholar
  126. Martenson, R. E., Deibler, G. E., and Kies, M. W., 1971b, Comparison of amino acid sequences of hypothalamic peptide, brain-specific histone and myelin basic protein, Nature (New Biol.) 234: 87–89.Google Scholar
  127. Martenson, R. E., Deibler, G. E., Kies, M. W., Levine, S., and Alvord, E. C, Jr., 1972a, Myelin basic proteins of mammalian and submammalian vertebrates: Encephalitogenic activities in guinea pigs and rats, J. Immunol. 109: 262–270.PubMedGoogle Scholar
  128. Martenson, R. E., Deibler, G. E, Kies, M. W., McKneally, S. S., Shapira, R., and Kibler, R. F., 1972b, Differences between the two myelin basic proteins of the rat central nervous system, Biochim. Biophys. Acta 263: 193–203.PubMedCrossRefGoogle Scholar
  129. Martenson, R. E., Kramer, A. J., Deibler, G. E., and Levine, S., 1975, Comparative studies of guinea pig and bovine myelin basic proteins: Partial characterization of chemically derived fragments and their encephalitogenic activities in Lewis rats, J. Neurochem. 24: 173–182.PubMedCrossRefGoogle Scholar
  130. Matthieu, J. M., Widmer, S., and Herschkowitz, N., 1973a, Biochemical changes in mouse brain composition during myelination, Brain. Res. 55: 391–402.PubMedCrossRefGoogle Scholar
  131. Matthieu, J. M., Widmer, S., and Herschkowitz, N., 19736, Jimpy, an anomaly of myelin maturation: biochemical study of myelination phases, Brain Res. 55: 403–412.PubMedCrossRefGoogle Scholar
  132. Matthieu, J. M., Quarles, R. H., Brady, R. O., and Webster, H., 1973c, Variation of proteins, enzyme markers and gangliosides in myelin subfractions, Biochim. Biophys. Acta 329: 305–317.PubMedCrossRefGoogle Scholar
  133. Mehl, E., 1972, Separation and characterization of myelin proteins, in Functional and Structural Proteins of the Nervous System (A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 157–170, Plenum Press, New York.CrossRefGoogle Scholar
  134. Mehl, E., and Halaris, A., 1970, Stoichiometric relation of protein components in cerebral myelin from different species, J. Neurochem. 17: 659–668.PubMedCrossRefGoogle Scholar
  135. Mehl, E., and Wolfgram, E., 1969, Myelin types with different protein components in the same species, J. Neurochem. 16: 1091–1097.PubMedCrossRefGoogle Scholar
  136. Miyake, M., and Kakimoto, Y., 1973, Protein methylation by cerebral tissue, J. Neurochem. 20: 859–871.PubMedCrossRefGoogle Scholar
  137. Miyamoto, E., and Kakiuchi, S., 1974, In vitro and in vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3Ȳ,5Ȳ-monophosphate-dependent protein kinases from brain, J. Biol. Chem. 249: 2769–2777.PubMedGoogle Scholar
  138. Miyamoto, E., Kakiuchi, S., and Kakimoto, Y., 1974, In vitro and in vivo phosphorylation of myelin basic protein by cerebral protein kinase, Nature (London) 249: 150.CrossRefGoogle Scholar
  139. Morell, P., Greenfield, S., Costantino-Ceccarini, E., and Wisniewski, H., 1972, Changes in the protein composition of mouse brain myelin during development, J. Neurochem. 19: 2545–2554.PubMedCrossRefGoogle Scholar
  140. Morell, P., Lipkind, R., and Greenfield, S., 1973, Protein composition of myelin from brain and spinal cord of several species, Brain Res. 58: 510–514.PubMedCrossRefGoogle Scholar
  141. Morgan, I. M., 1947, Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue, J. Exptl. Med. 85: 131–140.CrossRefGoogle Scholar
  142. Morris, S. J., Louis, C. F., and Shooter, E. M., 1971, Separation of myelin proteins on two different Polyacrylamide gel systems, Neurobiology 1: 64–67.Google Scholar
  143. Nakao, A., and Einstein, E. R., 1965, Chemical and immunochemical studies with the dialyzable encepholitogenic compound from bovine spinal cord, Ann. N.Y. Acad. Sci. 122: 171–181.PubMedCrossRefGoogle Scholar
  144. Nakao, A., Davis, W. J., and Einstein, E. R., 1966a, Basic proteins from the acidic extract of bovine spinal cord, Biochim. Biophys. Acta 130: 171–179.CrossRefGoogle Scholar
  145. Nakao, A., Davis, W. J., and Einstein, E. R., 1966/?, Basic proteins from the acidic extract of bovine spinal cord, Biochim. Biophys. Acta 130: 163–170.CrossRefGoogle Scholar
  146. Norton, W. T., 1972, Myelin, in Basic Neurochemistry (R. W. Albers, G. J. Siegel, R. Katzman, and B. W. Agranoff, eds.), pp. 365–386, Little, Brown & Co., Boston.Google Scholar
  147. Norton, W. T., and Poduslo, S. E., 1973a, Myelination in rat brain: Method of myelin isolation, J. Neurochem. 21: 749–757.PubMedCrossRefGoogle Scholar
  148. Norton, W. T., and Poduslo, S. E., 19736, Myelination in rat brain: Changes in myelin composition during brain maturation, J. Neurochem. 21: 759–773.PubMedCrossRefGoogle Scholar
  149. Nussbaum, J. L., and Mandel, P., 1973, Brain proteolipids in neurological mutant mice, Brain Res. 61: 295–310.PubMedCrossRefGoogle Scholar
  150. Olson, R. E., Klay, M., Good, R. A., and Condie, R. M., 1962, The encephalitogenic properties of bovine central nervous tissue fractions, J. Neuropath. Exptl. Neurol. 21: 461–470.CrossRefGoogle Scholar
  151. Oshiro, Y., and Eylar, E. H., 1970, Allergic encephalomyelitis: Preparation of the encephalitogenic basic protein from bovine brain, Arch. Biochem. 138: 392–396.PubMedCrossRefGoogle Scholar
  152. Paik, W. K., and Kim, S., 1971, Protein methylation: Enzymatic methylation of proteins after translation may take part in control of biological activities of proteins, Science 174: 114–119.PubMedCrossRefGoogle Scholar
  153. Paik, W. K., and Kim, S., 1973, Protein methylases during development of rat brain, Biochim. Biophys. Acta 313: 181–189.PubMedCrossRefGoogle Scholar
  154. Palmer, F. B., and Dawson, R. M. C, 1969a, The isolation and properties of experimental allergic encephalitogenic protein, Biochem. J. 111: 629–636.PubMedGoogle Scholar
  155. Palmer, F. B., and Dawson, R. M. C, 19696, Complex formation between triphosphoinositide and experimental allergic encephalitogenic proteins, Biochem. J. 111: 637–646.Google Scholar
  156. Palo, J., Savolainen, H., and Haltia, M., 1972, Proteins of peripheral nerve myelin in diabetic neuropathy, J. Neurol. Sci. 16: 193–199.PubMedCrossRefGoogle Scholar
  157. Paty, D. W., 1971, An encephalitogenic basic protein from human peripheral nerve, Europ. Neurol. 5: 281–287.PubMedCrossRefGoogle Scholar
  158. Peters, A., and Vaughn, J. E., 1970, Morphology and development of the myelin sheath, in Myelination (A. N. Davison, and A. Peters, eds.), pp. 3–79, Charles C. Thomas, Illinois.Google Scholar
  159. Pfeiffer, S. E., and Wechsler, W., 1972, Biochemically differentiated neoplastic clone of Schwann cells, Proc. Natl. Acad. Sci. (U.S.A.) 69: 2885–2889.CrossRefGoogle Scholar
  160. Pleasure, D.E., Feldmann, B., and Prockop, D. J., 1973, Diphtheria toxin inhibits the synthesis of myelin proteolipid and basic proteins by peripheral nerve in vitro, J. Neurochem. 20: 81–90.CrossRefGoogle Scholar
  161. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177–1191.PubMedCrossRefGoogle Scholar
  162. Quelin, S., and Brahic, M., 1973, Purification of basic encephalitogenic protein from brain of sheep, C. R. Acad. Sci. (Paris) 277: 2565–2568.Google Scholar
  163. Raghavan, S. S., Rhoads, D. B., and Kanfer, J. N., 1973, The effects of trypsin on purified myelin, Biochim. Biophys. Acta 328: 205–212.PubMedCrossRefGoogle Scholar
  164. Rauch, H. C., and Raffeis, S., 1964, Immunofluorescent localization of encephalitogenic protein in myelin, J. Immunol. 92: 452–455.PubMedGoogle Scholar
  165. Rivers, T. M., and Schwentker, F. F., 1935, Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys, J. Exptl. Med. 61: 689–702.CrossRefGoogle Scholar
  166. Robertson, D. M., Blight, R., and Lumsden, C. E., 1962, Dialysable peptide as the causative factor in experimental “allergic” encephalomyelitis, Nature (London) 196: 1005.CrossRefGoogle Scholar
  167. Roboz, E., and Henderson, N., 1959, Preparation and properties of water soluble proteins from bovine cord with “allergic” encephalomyelitis activity, in Allergic Encephalomyelitis (M. W. Kies and E. C. Alvord, Jr., eds.), pp. 281–292, Charles C. Thomas, Illinois.Google Scholar
  168. Rodriguez de Lores Arnaiz, G., Aberici de Canal, M., and de Robertis, E., 1971, Turnover of proteins in subcellular fractions of rat cerebral cortex, Brain Res. 31: 179–184.CrossRefGoogle Scholar
  169. Sammeck, R., 1973, Myelin sheath: Turnover of myelin basic proteins during morphogenesis, in Abstracts Fourth Meeting International Society for Neurochemistry, p. 189, Tokyo.Google Scholar
  170. Sammeck, R., and Brady, R. O., 1972, Studies of the catabolism of myelin basic proteins in the rat in situ and in vitro, Brain Res. 42: 441–453. Sammeck, R., Martenson, R. E., and Brady, R. O., 1971, Studies of the metabolism of myelin basic proteins in various regions of the central nervous system of immature and adult rats, Brain Res. 34: 241–254.Google Scholar
  171. Savolainen, H. J., 1972, Proteins and glycoproteins of human myelin and glial cell membrane with special reference to myelin formation, Tower Int. Technomed. J. Life sci. 2: 35–38.Google Scholar
  172. Savolainen, H., and Palo, J., 1972, Proteins of human glial cell membrane, FEBS Letters 20: 71–74.PubMedCrossRefGoogle Scholar
  173. Savolainen, H., Palo, J., Riekkinen, P., Moronen, P., and Brody, L. E., 1972, Maturation of myelin proteins in human brain, Brain Res. 37: 253–263.PubMedCrossRefGoogle Scholar
  174. Scheinberg, L. C, and Korey, S. R., 1958, Studies of white matter, J. Neuropathol. Exptl. Neurol 17: 439–449.CrossRefGoogle Scholar
  175. Shapira, R., Chou, F. C-H., McKneally, S. S., Urban, E., and Kibler, R. F., 1971a, Biological activity and synthesis of an encephalitogenic determinant, Science 173: 736–738.PubMedCrossRefGoogle Scholar
  176. Shapira, R., McKneally, S. S., Chou, F., and Kibler, R. F., 19716, Encephalitogenic fragment of myelin basic protein, J. Biol. Chem. 246: 4630–4640.Google Scholar
  177. Shooter, E. M., and Einstein, E. R., 1971, Proteins of the nervous system, Ann. Rev. Biochem. 40: 635–652.PubMedCrossRefGoogle Scholar
  178. Smith, M., 1968, The turnover of myelin in the adult rat, Biochim. Biophys. Acta 164: 285–293.PubMedCrossRefGoogle Scholar
  179. Smith, M., 1972, The turnover of myelin proteins, Neurobiology 2: 35–40.PubMedGoogle Scholar
  180. Smith, M. E., 1973a, A regional survey of myelin development: Some compositional and metabolic aspects, J. Lipid Res. 14: 541–551.PubMedGoogle Scholar
  181. Smith, M. E., 19736, Studies of the mechanism of demyelination: Triethyl tin induced demyelination, J. Neurochem. 21: 357–372.PubMedCrossRefGoogle Scholar
  182. Smythies, J. R., Benington, F., and Morin, F. D., 1970, Specifications of a possible serotonin receptor site in the brain, Neurosciences Res. Prog. Bull. 8: 117–122.Google Scholar
  183. Soto, E. F., 1964, Induction of experimental allergic encephalomyelitis with a myelin fraction obtained from bovine white matter. Neurology 14: 938–948.PubMedCrossRefGoogle Scholar
  184. Steck, A. J., and Appel. S. H., 1974, Phosphorylation of myelin basic protein, J. Biol. Chem. 249: 5416–5420.PubMedGoogle Scholar
  185. Sundarraj, N., and Pfeiffer, S. E., 1973, Myelin basic protein arginine methyl transferase: Wide distribution among both neurogenic and non-neurogenic tissues, Biochem. Biophys. Res. Commun. 52: 1039–1045.PubMedCrossRefGoogle Scholar
  186. Tomasi, L., and Kornguth, S. E., 1967, Purification and partial characterization of a basic protein from pig brain, J. Biol. Chem. 242: 4933–4938.PubMedGoogle Scholar
  187. Uyemura, K., Tobari, C, and Hirano, S., 1970, Purifications and properties of basic proteins in pig spinal cord and peripheral nerve, Biochim. Biophys. Acta 214: 190–197.PubMedCrossRefGoogle Scholar
  188. Uyemura, K., Tobari, C, Hirano, S., and Tsukada, Y., 1972, Comparative studies on the myelin proteins of bovine peripheral nerve and spinal cord, J. Neurochem. 19: 2607–2614.PubMedCrossRefGoogle Scholar
  189. Uyemura, K., Kitamura, K., and Ogawa, Y., 1975, Studies on the antigenic protein to induce experimental allergic neuritis (EAN), Acta Neuropathologica (in press).Google Scholar
  190. Westall, F. C, 1972, Solid phase peptide synthesis as applied to experimental allergic encephalomyelitis, in Multiple Sclerosis (E. J. Field, T. M. Bell, and P. R. Carnegie, eds.), pp. 72–79, North-Holland Publ. Co., Amsterdam.Google Scholar
  191. Westall, F. C, 1973, An explanation for the determination of “self and “non-self proteins, J. Theoret. Biol. 38: 139–141.CrossRefGoogle Scholar
  192. Westall, F. C, 1974, Released myelin basic protein: The immunogenic factor? Immunochemistry. 11: 513–515.PubMedCrossRefGoogle Scholar
  193. Westall, F. C, Robinson, A. B., Caccam, J., Jackson, J., and Eylar, E. H., 1971, Essential chemical requirements for induction of allergic encephalomyelitis, Nature (London) 229: 22–24.CrossRefGoogle Scholar
  194. White, S. R., White, F. P., Barnes, C. D., and Albright, J. F., 1973, Increased shock sensitivity in rats with experimental allergic encephalomyelitis and reversal by 5-hydroxytryptophan, Brain Res. 58: 251–254.PubMedCrossRefGoogle Scholar
  195. Whittingham, S., Bencina, B., Carnegie, P. R., and McPherson, T. A., 1972, Properties of antibodies produced in rabbits to human myelin and myelin basic protein, Int. Arch. Allergy Appl. Immunol. 42: 250–263.PubMedCrossRefGoogle Scholar
  196. Wolman, M., 1971, Distribution of various protein fractions in central and peripheral myelin, Exptl. Neurol. 30: 309–323.CrossRefGoogle Scholar
  197. Wood, J. G., and Dawson, R. M. C, 1973a, A major myelin glycoprotein of sciatic nerve, J. Neurochem. 21: 717–719.PubMedCrossRefGoogle Scholar
  198. Wood, J. G., and Dawson, R. M. C, 19736, The effect of trypsin on the proteins and lipids of myelin, in “Abstracts Fourth Meeting International Society for Neurochemistry,” Tokyo, p.187.Google Scholar
  199. Wood, J. G., and King, N., 1971, Turnover of basic protein of rat brain, Nature (London) 229: 56–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Patrick R. Carnegie
    • 1
  • Peter R. Dunkley
    • 1
  1. 1.The Russell Grimwade School of BiochemistryUniversity of MelbourneParkvilleAustralia

Personalised recommendations