The Development of High-Field /High Frequency ESR

Historical overview
  • Jack H. Freed
Part of the Biological Magnetic Resonance book series (BIMR, volume 22)

Abstract

We discuss the development of high field ESR into a powerful and flexible tool for studies of structure and dynamics in a wide variety of systems including those of biological interest. A range of techniques are discussed with particular emphasis on the developments at Cornell University, but the contributions of other groups to the constant refinement of the state of the art are also noted.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Electron Spin Resonance Study Electron Spin Resonance Spectrometer Continuous Wave Electron Spin Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lebedev, Ya.S., 1990. High-Frequency Continuous-Wave Electron Spin Resonance. Modern Pulsed and Continuous Wave ESR, (Eds. Kevan L, Bowman MK) Wiley, NY, 365–404.Google Scholar
  2. 2.
    Budil, D.E., Earle, K.A., Lynch, W.B., Freed, J.H., 1989. Electron Paramagnetic Resonance at 1 Millimeter Wavelengths. Advanced EPR Applications in Biology and Biochemistry, (Ed. Hoff A) Elsevier, Amsterdam, Ch. 8: 307–340.Google Scholar
  3. 3.
    Freed, J.H., 2000. New Technologies in Electron Spin Resonance. Ann. Rev. Phys. Chem. 51: 655–689.CrossRefGoogle Scholar
  4. 4.
    Borbat, P.P., Costa-Filho, A.J., Earle, K.A., Moscicki, J.K., Freed, J.H., 2001. Electron Spin Resonance in Studies of Membranes and Proteins. Science 291: 266–269.PubMedCrossRefGoogle Scholar
  5. 5.
    Feher, G., Richards, P.L., 1967. Determination of the Zero Field Splitting “D” in Herne Chloride by Far-Infrared Spectroscopy. Magnetic Resonance in Biological Systems, (Eds. Ehrenberg A, Malmström BG, Vänngârd T) Pergamon Press, NY, 141–144.Google Scholar
  6. 6.
    Brackett, G.C., Richards, P.L., Caughey, W.S., 1971. Far-Infrared Magnetic Resonance In Fe(III) And Mn(III) Porphyrins, Myoglobin, Hemoglobin, FerrichromeA, And Fe(III) Dithiocarbamates. J. Chem. Phys. 54: 4383–4401.CrossRefGoogle Scholar
  7. 7.
    Champion, P.M., Sievers, A.L., 1980. Far infrared magnetic resonance of deoxyhemoglobin and deoxymyoglobin. J. Chem. Phys. 72:1569–1582.Google Scholar
  8. 8.
    Grinberg, O.Ya., Dubinskii, A.A., Shuvalov, V.F., Oranskii, L.A., Kurochkin, V.I., Lebedev, Ya.S., 1976. Submillimeter ESR Spectroscopy of Free Radicals. Dokl. Phys. Chem. 230: 923.Google Scholar
  9. 9.
    Lynch, B., Earle, K.A., Freed, J.H., 1988. A 1 Millimeter-Wave ESR Spectrometer. Rev. Sci. Instr. 59:1345–1351.Google Scholar
  10. 10.
    Barra, A.L., Brunel, L.C., Robert, J.B., 1990. EPR Spectroscopy at Very High-Field. Chem. Phys. Lett. 165:107–9.Google Scholar
  11. 11.
    Earle, K.A., Budil, D.E., Freed, J.H., 1996. Millimeter Wave Electron Spin Resonance Using Quasioptical Techniques. Adv. in Magn. and Optical Res. 19: Ch. 3:253–323.Google Scholar
  12. 12.
    Goldsmith, P.F., 1998. Quasioptical Systems: Gaussian Beam Quasioptical propagation and Applications. NY: IEEE Press.CrossRefGoogle Scholar
  13. 13.
    Haindl, E., Möbius, K., Oloff, H., 1985. 94 GHz Electron-Paramagnetic-Res Spectrometer With Fabry-Perot Resonator. Z Naturforsch. A40:169–72.Google Scholar
  14. 14.
    Earle, K.A., Freed, J.H., 1999. Quasioptical Hardware for a Flexible FIR-EPR Spectrometer. Appl. Magn. Res. 16: 247–272.CrossRefGoogle Scholar
  15. 15.
    Tannenwald, P.E., 1980. Far Infrared Heterodyne Detectors. Intl. J. of IR and MM Waves. 1:159–73.Google Scholar
  16. 16.
    Lucas, C., Amingual, D., Chataud, J.P., 1994. Recent Developments In Low-Temperature Infrared Detectors. J. Phys. 1V Colloq. 4: 177–82.Google Scholar
  17. 17.
    Nilges, M.J., Smimov, A.I., Clarkson, R.B., Belford, R.L., 1999. Electron Paramagnetic Resonance W-band Spectrometer with a Low-Noise Amplifier. Appl. Magn. Reson. 16:167–83.Google Scholar
  18. 18.
    Earle, K.A., Budil, D.E., Freed, J.H., 1993. 250 GHz EPR of Nitroxides in the Slow- Motional Regime: Models of Rotational Diffusion. J. Phys. Chem. 97:13289–13297.Google Scholar
  19. 19.
    Earle, K.A., Moscicki, J„ Polimeno, A., Freed, J.H., 1997. A 250 GHz. ESR Study of o-terphenyl: Dynamic Cage Effects above T c . J. Chem. Phys. 106: 9996–10015.Google Scholar
  20. 20.
    Earle, K.A., Moscicki, J., Polimeno. A., Freed, J.H., 1998. Response to “Comment on `A 250 GHz ESR Study of o-terphenyl Dynamic Cage Effects above T c ”. J. Chem. Phys. 109: 10525–10526.Google Scholar
  21. 21.
    Budil, D.E., Earle, K.A., Freed, J.H., 1993. Full Determination of the Rotational Diffusion Tensor by Electron Paramagnetic Resonance at 250 GHz. J. Phys. Chem. 97: 1294–1303.CrossRefGoogle Scholar
  22. 22.
    Polimeno, A., Freed, J.H., 1995. Slow Motional ESR in Complex Fluids: The Slowly Relaxing Local Structure Model of Solvent Cage Effects. J. Phys. Chem. 99: 10995–11006.Google Scholar
  23. 23.
    Budil, D.E., Lee, S., Saxena, S., Freed, J.H., 1996. Non-Linear Least Squares Analysis of Slow-Motion EPR Spectra in One and Two Dimensions Using a Modified Levenberg-Marquardt Algorithm. J. Magn. Res. Al20:155–189.Google Scholar
  24. 24.
    Rao, K.V.S., Polnaszek, C.F., Freed, J.H., 1977. ESR Studies of Anisotropic Ordering, Spin Relaxation, and Slow Tumbling in Liquid Crystalline Solvents, II. J. Phys. Chem. 81: 449–456.CrossRefGoogle Scholar
  25. 25.
    Liang, Z.C., Freed, J.H., 1999. An Assessment of the Applicability of Multifrequency ESR to Study the Complex Dynamics of Biomolecules. J. Phys. Chem. B 103: 638496.Google Scholar
  26. 26.
    Barnes, J., Liang, Z., Mchaourab, H., Freed, J.H., Hubbell, W.L., 1999. A Multi-Frequency ESR Study of T4 Lysozyme Dynamics. Biophys. J. 76: 3298–3306.PubMedCrossRefGoogle Scholar
  27. 27.
    Pilar, J., Labsky, J., Marek, A., Budil, D.E., Earle, K.A., Freed, J.H., 2000. Segmental Rotational Diffusion of Spin Labeled Polystyrene in Dilute Toluene Solution by 9 and 250 GHz ESR. Macromolecules 33: 4438–4444.CrossRefGoogle Scholar
  28. 28.
    Liang, Z., Bobst, A.M., Keyes, R.S., Freed, J.H., 2000. An Electron Spin Resonance Study of DNA Dynamics Using the Slowly Relaxing Local Structure Model. J. Phys. Chem. B 104: 5372–5381.CrossRefGoogle Scholar
  29. 29.
    Budil, D.E., Kolaszkowski, S.V., Perry, A., Valaprasad, C., Johnson, F., Strauss, P.R., 2000. Dynamics and Ordering in a Spin-Labeled Oligonucleotide Observed by 220 GHz Electron Paramagnetic Resonance. Biophys. J. 78: 430–438.PubMedCrossRefGoogle Scholar
  30. 30.
    Bennati, M., Gerfen, G.J., Martinez, G.V., Griffin, R.G., Singel, D.J., Millhauser, G.L., 1999. Nitroxide side-chain dynamics in a spin-labeled helix-forming peptide revealed by high-frequency (139.5-GHz) EPR spectroscopy. J. Mag. Reson. 139: 28 1286.Google Scholar
  31. 31.
    Smirnov, A.I., Belford, R.L., Clarkson, R.B., 1998. Comparative spin label spectra at X-band and W-band. Biol. Magn. Reson. 14: 83–108.CrossRefGoogle Scholar
  32. 32.
    Barnes, J.P., Freed, J.H., 1998. Dynamics and Ordering in Mixed Model Membranes of DMPC and DMPS: A 250 GHz. ESR Study. Biophys. J. 75: 2532–2546.PubMedCrossRefGoogle Scholar
  33. 33.
    Marsh, D., Gaffnéy, B., 1998. High-Frequency, Spin-Label EPR of Nonaxial Lipid Ordering and Motion in Cholesterol-Containing Membranes. Proc. Natl. Acad. Sci. 95:12940–43.Google Scholar
  34. 34.
    Lou, Y., Ge, M., Freed, J.H., 2001. A Multifrequency ESR Study of the Complex Dynamics of Membranes. J. Phys. Chem. B 105:11053–11056.Google Scholar
  35. 35.
    Clarkson, R.B., Smirnov, A.I., Smirnova, T.I., Kang, H., Belford, R.L., Earle, K.A., Freed, J.H., 1998. Multi-Frequency EPR Determination of Zero-Field Splitting of High-Spin Species in Liquids: Gd (III) Chelates in Water. Molec. Physics. 95:1325–1332.Google Scholar
  36. 36.
    Shin, D.H., Dye, J.L., Budil, D.E., Earle, K.A., Freed, J.H., 1993. 250 GHz and 9.5 GHz EPR Studies of an Electride and Two Alkalides. J. Phys. Chem. 97:1213–1219.Google Scholar
  37. 37.
    Vanderdonk, W.A., Stubbe, J., Gerfen, G.J., Bellew, B.F., Griffin, R.G., 1995. EPR Investigations of the Inactivation of E. coli Ribonucleotide Reductase with 2’-Azido2’-deoxyuridine 5’-Diphosphate: Evidence for the Involvement of the Thiyl Radical of C225–R1. J. Am. Chem. Soc. 117: 8908–8916.Google Scholar
  38. 38.
    Smirnova, T.I., Smimov, A.I., Clarkson, R.B., Belford, R.L., Kotake, Y., Janzen, E.G., 1997. High-Frequency (95 GHz) EPR Spectroscopy To Characterize Spin • Adducts. J. Phys. Chem. B101: 3877–85.Google Scholar
  39. 39.
    vanderEst, A., Prisner, T., Bittl, R., Fromme, P., Lubitz, W., Möbius, K., Stehlik, D., 1997. Time-Resolved X-, K-, and W-Band EPR of the Radical Pair State 4+ 04- of Photosystem I in Comparison with P865QA in Bacterial Reaction Centers. J. Phys. Chem. B101:1437–43.Google Scholar
  40. 40.
    Tipikin, D.S., Earle, K.A., Freed, J.H., 1999. The High Frequency EPR Spectra of Polyaniline: Line Narrowing due to Spin Exchange. Polymer Science. B 41:1043–1047.Google Scholar
  41. 41.
    Clarkson, R.B., Wang, W., Brown, D.R., Crookham, H.C., Belford, R.L., 1990. Multifrequency EPR Studies of Argonne and Illinois Sample Bank Coals. Fuel 69: 1405–1411.CrossRefGoogle Scholar
  42. 42.
    Earle, K.A., Moscicki, J.K., Ge, M., Freed, J.H., 1994. 250 GHz ESR Studies of Polarity Gradients along the Aliphatic Chains in Phospholipid Membranes. Biophys. J. 66: 1213–1221.Google Scholar
  43. 43.
    Lynch, W.B., Boorse, R.S., Freed, J.H., 1993. A 250 GHz ESR Study of Highly Distorted Manganese Complexes. J. Am. Chem. Soc. 115: 10909–10915.CrossRefGoogle Scholar
  44. 44.
    Wood, R.M., Stucker, D.M., Jones, L.M., Lynch, W.B., Misra, S.K., Freed, J.H. 1999. An EPR Study of Some Highly Distorted Tetrahedral Manganese (II) Complexes at 250 GHz. Inorgan. Chem. 38: 5384–5388CrossRefGoogle Scholar
  45. 45.
    Policar, C., Knüpling, M., Frapart, Y.M., and Un, S., 1998. Multifrequency High-Field EPR Study of Binuclear Mn(III)Mn(IV) Complexes. J. Phys. Chem. B 102: 10391–98.CrossRefGoogle Scholar
  46. 46.
    Barra, A-L., Gatteschi, D., Sessoli, R., Abbati, G.L., Cornia, A., Fabretti, A.C., Uytterhoeven, M.G., 1999. Electronic structure of manganese(III) compounds from high-frequency EPR spectra. Angew. Chemie, 36: 2329–31.Google Scholar
  47. 47.
    Telser, J., Pardi, L.A., Krzystek, J., Brunel, C., 1998. EPR Spectra from “EPRSilent” Species: High-Field EPR Spectroscopy of Aqueous Chromium(II). Inorg. Chem. 37: 5769–75.CrossRefGoogle Scholar
  48. 48.
    Misra, S.K., Andronenko, S.A., Earle, K.A., Freed, J.H., 2001. Single-Crystal EPR Studies of Transition-Metal Ions in Inorganic Crystals at Very High Frequencies. Appl. Magn. Res. 21: 549–561.CrossRefGoogle Scholar
  49. 49.
    Misra, S.K., Andronenko, S.I., Rinaldi, G., Chard, P., Earle, K.A., Freed, J.H., 2003. Variable-Frequency EPR Study of Mn2+-doped NH4Cla.9L.1Single Crystal at 9.6, 36 and 249.9 GHz: Structural Phase Transition. J. Magn. Res. 160: 131–138.CrossRefGoogle Scholar
  50. 50.
    Barnes, J.P., Freed, J.H., 1997. Aqueous Sample Holders for High-Frequency ESR. Rev. Sci. Instrum. 68: 2838–2846.CrossRefGoogle Scholar
  51. 51.
    Barnes, J.P., Freed, J.H., 1998. A Shunt Fabry-Perot Resonator for High Frequency ESR Using a Variable Coupling Scheme. Rev. Sci. Instrum. 69: 3022–3027.CrossRefGoogle Scholar
  52. 52.
    Earle, K.A., Tipikin, D.S., Freed, J.H., 1996. Far Infrared EPR Spectrometer Utilizing a Quasi-Optical Reflection Bridge. Rev. Sci. Instr. 67: 2502–2513.CrossRefGoogle Scholar
  53. 53.
    Smith, G.M., Le Surf, J.C.G., Mitchell, R.H., Riedi, P.C., 1998. Quasi-optical cw mm-wave electron spin resonance spectrometer. Rev. Sci. Instrum. 69: 3924–3927.CrossRefGoogle Scholar
  54. 54.
    Budil, D.E., Ding, Z., Smith, G.R., Earle, K.A., 2000. Jones Matrix Formalism for Quasioptical EPR. J. Magn. Res. 144: 20–34.CrossRefGoogle Scholar
  55. 55.
    Hassam, A.K., Maniero, A-L., van Toi, H., Saylor, C., Brunel, L.C., 1999. High-Field EMR: Recent Developments at 25 Tesla, and Next-Millenium Challenges. Appl. Magn. Res. 16: 299–308.CrossRefGoogle Scholar
  56. 56.
    Cardin, J.T., Kolaczkowski, S.V., Anderson, S.V., Budil, D.E., 1999. Quasioptical Design for an EPR Spectrometer Based on a Horizontal-Bore Superconducting Solenoid. Appl. Magn. Res. 16: 273–292.CrossRefGoogle Scholar
  57. 57.
    Fuchs, M.R., Prisner, T,R„ Möbius, K., 1999. A high-field/high-frequency heterodyne induction-mode electron paramagnetic resonance spectrometer operating at 360 GHz. Rev. Sci. lnstrum. 70: 3681–3.Google Scholar
  58. 58.
    Hassan, A., van Toi, J., Maniero, A.L., Brunel, L.C., Earle, K.A., Freed, J.H., 1999. Study of Motional Dynamics in Complex Fluids by Very High-Field, Very High-Frequency EPR (VHF-EPR). Physical Phenomena at High Magnetic Fields-III, Eds. Z. Fisk, L. Gurkov, J. R. Schrieffer, World Scientific Publishers, NJ, 453–456.Google Scholar
  59. 59.
    Prisner, T.F., 1997. Pulsed high-frequency/high-field EPR. Adv. in Magn. and Optical Res. 20:245–300.Google Scholar
  60. 60.
    Allgeier, J., Disselhorst, J.A.J.M., Weber, R.T., Wenckebach, W.T., Schmidt, J., 1990. High-Frequency Pulsed Electron Spin Resonance. in Modern Pulsed and Continuous Wave ESR, Eds. L. Kevan, and M.K. Bowman, Wiley, NY, 267–284.Google Scholar
  61. 61.
    Bresgunov, A.Y., Dubinskii, A.A., Krymov, V.N., Petrov, Y.G., Poluektov, O.G., Lebedev, Y.S., 1991. Pulsed EPR in 2-mm Band. Appl. Magn. Res. 2: 715.CrossRefGoogle Scholar
  62. 62.
    Bennati, M., Farrar, C.T., Bryant, J.A., Inati, S.J., Weis, V., Gerfen, G.J., RiggsGelasco, P., Stubbe, J., Griffin, R.G., 1999. Pulsed Electron-Nuclear Double Resonance (ENDOR) at 140 GHz. J. Magn. Res. 138: 232–243.CrossRefGoogle Scholar
  63. 63.
    Rohrer, M., Gast, P., Möbius, K., Prisner, T.F., 1996. Anisotropic motion of semiquinones in photosynthetic reaction centers of Rhodobacter sphaeroides R26 and in frozen isopropanol solution as measured by pulsed high-field EPR at 95 GHz. Chem. Phys. Leu. 259: 523–30.CrossRefGoogle Scholar
  64. 64.
    Gromov, I., Krymov, V., Manikandan, P., Arieli, D., Goldfarb, D., 1999. A W-Band Pulsed ENDOR Spectrometer: Setup and Application to Transition Metal Centers. J. Magn. Res. 139: 8–17.CrossRefGoogle Scholar
  65. 65.
    Weis, V., Bennati, M., Rosay, M., Bryant, J.A., Griffin, R.G., 1999. High-Field DNP and ENDOR with a Novel Multiple-Frequency Resonance Structure. J. Magn. Res. 140: 293–299.CrossRefGoogle Scholar
  66. 66.
    Calame, J.P., Danly, B.G., Garven, M., 1999. Measurements of intrinsic shot noise in a 35 GHz gyroklystron. Physics of Plasmas 6: 2614–2925.Google Scholar
  67. 67.
    Moll, H.P., Kutter, C., van Tol, J., Zuckerman, H., Wyder, P., 1999. Principles and Performance of an Electron Spin Echo Spectrometer Using Far Infrared Lasers as Excitation Sources. J. Magn. Res. 137: 46–58.CrossRefGoogle Scholar
  68. 68.
    Hofbauer, W., Earle, K.A., Dunnam, C., Freed, J.H., A High Power 95 GHz Pulsed ESR Spectrometer. (to be published).Google Scholar
  69. 69.
    Mead, J., McIntosh, R., 1991. Pulsed polarimetric millimeter-wave radars that utilize extended interaction amplifier and oscillator tubes. Nat’l. Telesystems Conf Proc. 1: 343–6.CrossRefGoogle Scholar
  70. 70.
    Blank, M., Danly, B.G., Levush, B., Calame, J.P., Nguyen, K., Pershing, D., Petillo, J., Hargreaves, T.A., True, R.B., Theiss, A.J., Good, G.R., Felch, K., James, B.G., Borchard, P., Cahalan, P., Chu, T.S., Jory, H., Lawson, W.G., Antonsen, T.M. Jr., 1999. Demonstration of a 10 kW average power 94 GHz gyroklystron amplifier.Physics of Plasmas 6: 4405–9.CrossRefGoogle Scholar
  71. 71.
    Dumesh, B.S., Surin, L.A., 1996. Two highly sensitive microwave cavity spectrometers. Rev. Sci. Instrum. 67: 3458–64.CrossRefGoogle Scholar
  72. 72.
    Risaliti, R., Ronchi, L., Scordino, A., 1988. Modified Ledatron And Orotron Tubes With Improved Sub-mm Performance. Infrared Phys. 28: 353–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jack H. Freed
    • 1
  1. 1.Baker Laboratory of Chemistry and Chemical Biology, National Biomedical Center for Advanced ESR Technology (ACERT)Cornell UniversityIthacaUSA

Personalised recommendations