Technicolor and Compositeness

  • Rabindra N. Mohapatra
Part of the Graduate Texts in Contemporary Physics book series (GTCP)

Abstract

In the previous chapters we have emphasized that while the success of the SU(2) L × U(1) Y × SU(3) C model has indicated that the unified gauge theories are perhaps the right theoretical framework for the study of quark-lepton interactions, it still leaves a lot of questions unanswered. Some of the outstanding questions are:
  1. (a)

    the nature of the Higgs bosons and the origin of electro-weak symmetry breaking;

     
  2. (b)

    the apparent superfluous replication of quarks and lepton (and even Higgs bosons if electro-weak symmetry is higher); and

     
  3. (c)

    the origin of fermion masses which are much smaller than the scale of electro-weak symmetry breaking: for instance, m e,u,d ~ 10−5 Λ W .

     

Keywords

Gauge Theory Higgs Boson Chiral Symmetry Global Symmetry Fermion Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Susskind, Phys. Rev. D20, 2619 (1979); S. Weinberg, Phys. Rev. D19, 1277 (1979).CrossRefGoogle Scholar
  2. [2]
    E. Fahri and L. Susskind, Phys. Rev. D20, 3404 (1979); S. Dimopoulos, Nucl. Phys. B169, 69 (1980).Google Scholar
  3. [3]
    S. Simopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979); E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).Google Scholar
  4. [4]
    S. Dimopoulos and J. Ellis, Nucl. Phys. B182, 505 (1981).ADSCrossRefGoogle Scholar
  5. [5]
    J. C. Pati, in Superstrings, Compositeness and Cosmology (edited by S. Gates and R. N. Mohapatra ), World Scientific, Singapore, 1987, p. 462;Google Scholar
  6. [6]
    J. Calmet, S. Narison, M. Perrottet, and E. DeRafael, Rev. Mod. Phys. 49, 21 (1977); T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 41, 1573 (1981); T. Kinoshita, B. Nizic, and Y. Okamoto, Phys. Rev. Lett. 53, 717 (1984).Google Scholar
  7. [7]
    R. Barbieri, L. Maiani, and R. Petronzio, Phys. Lett. 96B, 63 (1980); S. J. Brodsky and S. D. Drell, Phys. Rev. D22, 2236 (1980).Google Scholar
  8. [8]
    See, for instance, models of O. W. Greenberg and J. Sucher, Phys. Lett. 99B, 339 (1981); J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981).Google Scholar
  9. [9]
    O. W. Greenberg, R. N. Mohapatra, and M. Yasue, Phys. Rev. Lett. 51, 1737 (1983).Google Scholar
  10. [10]
    E. J. Eichten, K. D. Lane, and M. E. Peshkin, Phys. Rev. Lett. 50, 811 (1983).ADSCrossRefGoogle Scholar
  11. [11] M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974); G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).
    These bounds have been discussed in composite model framework by I. Bars, Nucl. Phys. B198, 269 (1982); and for a recent discussion of the conditions under which these bounds may be evaded, see O. W. Greenberg, R. N. Mohapatra, and S. Nussinov, Phys. Lett. 148B, 465 (1984).Google Scholar
  12. [12]
    B. Weinstein, in TSIMESS Workshop Proceedings, 1983 (edited by T. Goldman et al.), American Institute of Physics, New York, 1983.Google Scholar
  13. [13]
    G. ‘t Hooft, in Recent Developments in Gauge Theories, Plenum, New York, 1980, p. 135.Google Scholar
  14. [14]
    S. L. Alder, Phys. Rev. 177, 2426 (1969); R. Jackiw and J. S. Bell, Nuovo Cimeno, 60A, 47 (1969); S. L. Alder and W. Bardeen, Phys. Rev. 182, 1517 (1969).ADSCrossRefGoogle Scholar
  15. [15]
    Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, Nucl. Phys. B177, 157 (1981).ADSCrossRefGoogle Scholar
  16. [16]
    J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).ADSGoogle Scholar
  17. [17]
    J. C. Pati, O. W. Greenberg, and J. Sucher (Ref. [8]).Google Scholar
  18. [18]
    T. Applequist and J. Carrazone, Phys. Rev. D11, 2856 (1975).ADSGoogle Scholar
  19. [19]
    J. Preskill and S. Weinberg, Texas preprint, 1981.Google Scholar
  20. [20]
    D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983); E. Witten, Phys. Rev. Lett. 51, 2351 (1983); S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).ADSGoogle Scholar
  21. [21]
    They are analogous to the massless Goldstone—Majoron boson suggested by Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. 98B, 265 (1981).Google Scholar
  22. [22]
    For an apparent exception to this argument see an E(6) hypercolor model by Y. Tosa, J. Gibson, and R. E. Marshak, Private communication, 1984.Google Scholar
  23. [23]
    S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980); See also E. C.G. Sudarshan, Phys. Rev. D (1981).Google Scholar
  24. [24]
    D. A. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D17, 1529 (1978); M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).Google Scholar
  25. [25]
    L. Abbott and E. Farhi, Phys. Lett. 1O1B, 69 (1981); H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B, 319 (1981); R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981); For a review see R. N. Mohapatra, Proceedings of the Telemark Neutrino Mass Mini-Conference, 1982, American Institute of Physics, New York, 1982.Google Scholar
  26. [26]
    J. D. Bjorken, Phys. Rev. D19, 335 (1979); P. Q. Hung and J. J. Sakurai, Nucl. Phys. B143, 81 (1978).ADSCrossRefGoogle Scholar
  27. [27]
    R. Barbieri and R. N. Mohapatra, Phys. Lett. 120B, 195 (1982).Google Scholar
  28. [28]
    D. Schildknecht, in Proceedings of the Europhysics Study Conference on Electroweak Effects at High Energies (edited by H. Newman ), Plenum, New York, 1983.Google Scholar
  29. [29]
    U. Baur, H. Fritzsch, and H. Faissner, Phys. Lett. 135B, 313 (1984).Google Scholar
  30. [30]
    A. Masiero, R. N. Mohapatra, and R. D. Peccei, Nucl. Phys. B192, 66 (1981).ADSCrossRefGoogle Scholar
  31. [31]
    A. Masiero and R. N. Mohapatra, Phys. Lett. 103B, 343 (1981).Google Scholar
  32. [32]
    Y. Nambu, 1988 International Workshop on New Trends in Strongly Coupled Gauge Theories (edited by M. Bando et al.), World Scientific, Singapore, 1989, P. 3.Google Scholar
  33. [33]
    V. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. B221 177 (1989).Google Scholar
  34. [34]
    W. Bardeen, C. Hill, and M. Lindner, Phys. Rev. D41, 1647 (1990).ADSGoogle Scholar
  35. [35]
    B. Pendleton and G. G. Ross, Phys. Lett. 98B 291 (1981); C. Hill, Phys. Rev. D24, 691 (1981); C. Hill, C. Leung, and S. Rao, Nucl. Phys. B262, 517 (1985).Google Scholar
  36. [36]
    M. Luty, Phys. Rev. D41 2893 (1990); M. Suzuki, Phys. Rev. D41 3457 (1990).Google Scholar
  37. [37]
    T. Clark, S. Love, and W. Bardeen, Phys. Lett. B237, 235 (1990).Google Scholar
  38. [38]
    K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 66 556 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations