Electrical Characteristics of Interfaces. Electrical Double Layer and Zeta Potential

  • S. Ramachandra Rao

Abstract

The importance of surface charges in establishing electrical characteristics of interfaces, particularly of the solid/liquid, liquid/gas, and liquid/liquid ones, has already been stressed in the opening paragraphs of Chapter 1. Whenever a new solid surface is formed in a gaseous or a liquid environinent, as, for example, during dry or wet grinding, it either becomes charged at the moment of rupture of ionic or covalent bonds or picks up a Charge by a subsequent adsorption of ions. Freshly cleaved solids remain uncharged only if the cleavage exclusively ruptures van der Waals bonds when the underlying lattice points are occupied by covalently bonded molecules and, in addition, there are in the System no mobile charges such as electrons, ions, or orientable dipoles.

Keywords

Surface Charge Double Layer Zeta Potential Electrical Double Layer Electrical Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, T. N., and Eyring, H. (1970), Principles of electrode kinetics, in Physical Chemistry,Vol. IX A, Electrochemistry, H. Eyring. ed., Academic Press, New York, Chap. 3, pp. 247–344.Google Scholar
  2. Ball, B., and Fuerstenaü, D. W. (1973). A Review of the measurement of Streaming potentials, Mineral Sei. Eng. 5, 267–277Google Scholar
  3. Barlow, C. A (1970), The electrical double layer, in Physical Chemistry. Vol. IXA, Electrochemistry, H. Eyring, ed., Academic Press, New York. pp. 167–246.Google Scholar
  4. Bockris, J. O’M., and Conway, B. C, eds. (1954-1979). Modern Aspects of Electrochemistry, Vols. 1 and 2, Academic Press, New York, Vol. 3. Butterworth’s, London, Vols. 4-13, Plenum Press, New York.Google Scholar
  5. Bockris, J. O’M., and Reddy, A. K. N. (1998). Modern Electrochemistry, Vols. I and II Plenum, New York; see, in particular, Chapters 7–10.Google Scholar
  6. Butler, J. A. V. (1951), Electrical Phenomena at Interfaces, Methuen, London.Google Scholar
  7. Celik, M. S. and Yasar, E. (1995), Electrokinetic properties of some hydrated boron minerals, J. Colloid Interface Sci. 173, 181–185.CrossRefGoogle Scholar
  8. Conway, B. E. (1952), Electrochemical Data, Elsevier, Amsterdam, pp. 221–232.Google Scholar
  9. Conway, B. E. (1965), Theory and Principles of Electrode Processes, Ronald, New York.Google Scholar
  10. Conway, B. E. (1970), Some aspects of the thermodynamic and transport behaviour of Press, electrolytes, in Physical Chemistry, vol. IXA, Electrochemistry, H. Eyring, ed., Academic Press, New York, pp. 1–166.Google Scholar
  11. Conway, B. E. (1976), Electrochemical studies in surface science. Chemistry in Canada, (September) 28-32, Chemical Institute of Canada, Ottawa.Google Scholar
  12. De Bruyn, P. L., and Agar, G. E. (1962), Surlace chemistry of tiotation, in Froth Flotation-50th Anniversary Volume, D. W. Fuerstenau. ed., AI ME, New York, pp. 91–138Google Scholar
  13. Delahay, P. (1965), Double Layer and Electrode Kinetics. Wiley-Interscience, New York.Google Scholar
  14. Derjaguin, B. V., and Dukhin. S. S. (1974), Equilibrium (and nonequilibrium) double layer and electrokinetic phenomena. in Surface and Colloid Science, Vol. 7, ed. E. Matijevic, Wiley, New York, pp. 49–335.Google Scholar
  15. Dukhin, S. S. (1974), Development of notions as to the mechanism of electrokinetic phenomena and the strueture of the colloid micelle. in Surface. and Colloid Science, Vol. 7, ed. E. Matijevic, Wiley, New York, pp. 1–47.Google Scholar
  16. Eitel, W. (1975), Silicate Science, Vol. 6, Silicate Structures and Dispersoid Systems, Academic Press, New York.Google Scholar
  17. Frumkin, A. N., and Damaskin, B. C. (1964), Adsorption of organic compounds at electrodes, in Modern Aspects of Electrochemistry. Vol. 3. eds. J. O’M. Bockris and B. C. Conway, Butterworth’s, London, pp. 149–223.Google Scholar
  18. Gerischer, H. (1970), Semiconductor electrochemistry, in Physical Chemistry, Vol. IXA, Electrochemistry, ed. H. Eyring, Academic Press, New York, pp. 463–542.Google Scholar
  19. Gileadi, E., Kirowa-Eisner, E., and Penciner, J. (1975), Interfacial Electrochemistry, An Experimentell Approach, Addison-Wesley, Reading. Massachusetts.Google Scholar
  20. Hunter, R. J. (2001), Foundations of Colloid Science, Oxford University Prsess, Oxford.Google Scholar
  21. Her, R. K. (1955), The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York.Google Scholar
  22. Kerker, M. ed. (1976), Colloid and Interface Science, Vols. I-V, Proceedings of the International Conference on Colloids and Surfaces, San Juan, Puerto Rico, June 76, Academic Press, New York.Google Scholar
  23. Kitahara, A. and Watanabe, A. (editors) (1984), Electrical Phenomena at Interfaces, Marcel Dekker, New York.Google Scholar
  24. Mackenzie, J. M. W. (1971), Zeta potential studies in mineral processing: Measurement techniques and applications, Mineral Sci. Eng. 3(3), 25–43.Google Scholar
  25. Ney, P. (1973), Zeta Potentiale und Flotierbarkeit von Mineralen, Springer, Berlin.CrossRefGoogle Scholar
  26. Overbeek, J. Th. G. (1952), Electrokinetic phenomena. in Colloid Science, Vol. I, H. R. Kruyt, ed., Elsevier, Amsterdam.Google Scholar
  27. Parks, G. A. (1965), The isoelectric points of solid oxides. solid hydroxides, and aqueous hydrox. complex Systems, Chem. Rev. 65. 177–198.CrossRefGoogle Scholar
  28. Parks, G. A. (1967), Aqueous Surface Chemistry of oxides and complex oxide minerals, Advances in Chemistry Series No 67, Equilibrium Concepts in Natural Water Systems, ACS, Washington, D. C.Google Scholar
  29. Parsons, R. (1954), Equilibrium properties of electrified interphases. in Modern Aspects of Electrochemistry, Vol. I, eds. J. O’M. Bockris and B. C. Conway, Butterworth’s, London, pp. 103–179.Google Scholar
  30. Payne, R. (1973), Double layer at the mercury-solution interface, in Progress in Surface and Membrane Science, Vol. 6, eds. J. F. Danielli, M. D. Rosenberg, and D. A. Cadenhead, Academic Press, New York, pp. 51–123.Google Scholar
  31. Shaw, D. J. (1966), Introduction to Colloid and Surface Chemistry, Butterworths, London.Google Scholar
  32. Shaw, D. J. (1969), Electrophoresis, Academic Press, New York.Google Scholar
  33. Van Olphen, H. (1963), An Introduction to Clay Colloid Chemistry, Interscience, New York.Google Scholar
  34. Van Olphen, H., and Mysels, K. J. (1975). Physical Chemistry, Enriching Topics from Colloid and Surface Science, Theorex, La Jolla, California.Google Scholar
  35. Verwey, E. W., and Overbeek, J. T. H. G. (1948). Theory of the Stability of Hydrophobie Colloids, Elsevier, Amsterdam.Google Scholar
  36. Vetter, K. J. (1961), Elektrochemische Kinetik, Springer, Berlin.CrossRefGoogle Scholar
  37. Yeager, E., and Kuta, J. (1970), Techniques for the Study of Electrode Processes, in Physical Chemistry, IXA, Electrochemistry, H. Eyring. ed., Academic Press, New York, 345–361.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Ramachandra Rao
    • 1
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations