Equations of State and Macrokinetics of Decomposition of Solid Explosives in Shock and Detonation Waves

  • G. I. Kanel
  • V. E. Fortov
  • S. V. Razorenov
Chapter
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

A natural, general goal of studies of detonation is to provide means for predicting explosion phenomena. In modern understanding, complete predictability is achieved when the phenomena considered can be simulated using a computer. In the calculations, properties of explosive materials are characterized by the equation of state of the unreacted high explosive (HE) and of the detonation products, and by macrokinetic equations that describe the rate of chemical reaction of the HE to form the detonation products. Other practical goals of the investigations are to reveal microscopic mechanisms of initiation and evolution of the HE energy release, identifying methods of controlling the sensitivity of HE to intense impulsive loading, and to provide a theoretical basis for solving the safety problems of explosive handing.

Keywords

Detonation Wave Shock Compression Detonation Velocity Detonation Product High Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasenkov, A.N., V.M. Bogomolov, and I.M. Voskoboinikov (1969). “Generalized shock adiabat of condensed matter,” J. Appl. Mech Tech. Phys. 10(4), pp. 660–664 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 10(4), p. 137 (1969)].ADSGoogle Scholar
  2. Afanasenkov, A.N., Bogomolov, V.M., and Voskoboinikov, I.M. (1970). “Calculations of the detonation parameters for mixtures of high explosives with inert additives.” Comb. Expl. Shock Waves 6(2), pp. 163–166 (1970) [trans. from Fiz. Goreniya Vzryva 6(2), pp. 182–186 (1970)].Google Scholar
  3. Afanasenkov, A.N., and V.A. Danilenko (1975). “Initiation of shock-wave detonation of hexogen mixtures with liquid fillers,” Comb., Expl. Shock Waves 11(6), pp. 778–784 [trans. from Fiz. Goreniya Vzryva 11(6), pp. 915–922 (1975)].Google Scholar
  4. Afanasiev, G.T., and V.K. Bobolev (1968). Initiation of Solid Explosives. Nauka, Moscow, (in Russian)Google Scholar
  5. Agureikin, V.A., B.P. Kryukov, and V.N. Postnov (1981). “The estimation of influence of gauges on the matter flow under shock-wave initiation of heterogeneous HE,” in: Detonation. Proceedings of the Second All-Union Workshop on Detonation, Inst, of Chem. Phys., Chernogolovka, pp. 12–15. (in Russian).Google Scholar
  6. Akhmadeev, N.Kh. (1981). “Simulation of detonation waves in solid explosives,” Comb. Expl. Shock Waves 17(1), pp. 87–93. [trans. from: Fiz. Goreniya Vzryva 17(1), pp. 109–117(1981).]Google Scholar
  7. Akimova, L.N., A. Ya. Apin, and L.N. Stesik (1972). “Detonation of explosives containing boron and its organic derivatives.” Comb. Expl. Shock Waves 8(4), pp. 387–390. [trans. from Fiz. Goreniya Vzryva 8(4), pp. 475–479 (1972).]Google Scholar
  8. Al’tshuler, L.V., V.K. Ashayev, G.S. Doronin, A.D. Levin, et al. (1980). “Experimental investigation of states within the chemical reaction zone of detonation wave,” in: “Chemical Physics of Processes of Combustion and Explosion. Detonation” (Proceedings of 6th All-Union Symposium on Combustion and Explosion), Inst. Chem. Phys., Chernogolovka, pp. 8–11. (in Russian).Google Scholar
  9. Al’tshuler, L.V., V.K. Ashaev, V.V. Balalaev, G.S. Doronin, and V.S. Zhuchenko (1983) Parameters and Detonation Modes of Condensed HE. Comb. Expl. Shock Waves 19(4), pp. 515–520. [trans. from Fiz. Goreniya Vzryva (4), pp. 153–159 (1983).]Google Scholar
  10. Al’tshuler, L.V., V.V. Balalayev, G.S. Doronin, V.S. Zhuchenko, and A.S. Obukhov (1981). “Particularities of detonation of desensitized HE,” in: Detonation. Materials of the II All-Union Workshop on Detonation, pp. 36–39, Inst, of Chem. Phys., Chernogolovka. (in Russian)Google Scholar
  11. Al’tshuler L.V., G.I. Kanel, and B.S. Chekin (1977). “New measurements of viscosity of water behind of the shock wave fronts.” Sov. Phys.-JETP 45(2), pp. 348–350. [trans. from Zh. Eksp. Teor. Fiz. 45(2), pp. 663–665 (1977).]ADSGoogle Scholar
  12. Anderson, A.B., M.J. Ginsberg, W.L. Seitz, and J. Wackerle (1981). “Shock initiation of porous TATB,” in: Proc. Seventh Symp. (International) on Detonation, Report MP 82–334, Naval Surface Warfare Center, White Oak, MD, (1981).Google Scholar
  13. Andreev, K.K. (1966). Thermal Decomposition and Combustion of Explosives. Nauka, Moscow, (in Russian)Google Scholar
  14. Andreev, S.G., M.M. Boiko, I.F. Kobylkin, and V.S. Sokov’ev (1979). “Formation of sites in trotyl and tetryl with a weak shock action,” Comb. Expl. Shock Waves 15(6), pp. 810–814. [trans. from Fiz. Goreniya Vzryva (6), pp. 143–147 (1979).]Google Scholar
  15. Aniskin, A.I. (1986). “Detonation of mixtures of high explosives with aluminum.” in: Detonation an Shock Waves. Proceedings of VIII Soviet Symposium on Combustion and Explosion, hist. Chem. Phys., Chemogolovka, pp. 26–32. (in Russian)Google Scholar
  16. Aniskin, A.I., and K.K. Shvedov (1979). in: Detonation. Critical Phenomena. Physico-Chemical Transformations in Shock Waves, Inst Chem. Phys., Chemogolovka, pp. 26–30. (in Russian)Google Scholar
  17. Apin, A.Ya., and L.N. Stesik (1955) in: The Physics of Explosion, collection of papers, No. 3, USSR Academy of Sciences, p. 87. (in Russian)Google Scholar
  18. Ashaev, V.K., G.S. Doronin, and A.D. Levin (1988). “Detonation front structure in condensed high explosives,” Comb. Expl. Shock Waves 24(1), pp. 88–92 [trans. from Fiz. Goreniya Vzryva 24(1), pp. 95–99 (1988)].Google Scholar
  19. Batalova, M.V., S.M. Bakhrakh, and V.N. Zubarev (1980). “Excitation of a detonation in heterogeneous explosives by shock waves,” Comb. Expl. Shock Waves 16(2), pp. 227–231 [trans. from Fiz. Goreniya Vzryva (2), pp. 105–109 (1980)].Google Scholar
  20. Baum F.A., L.P. Orlenko, K.P. Stanyukovich, V.P. Chelyshev, and B.I. Shekhter (1975). Physics of Explosion, Nauka, Moscow, (in Russian)Google Scholar
  21. Belyakov, G.V. (1975). “Shock deformation of granular media,” Sov. Phys.-Dokl. 19(10), pp. 667–668. [trans. from: Dokl. Akad. Nauk SSSR 218(6), pp. 1280–1282 (1974).]ADSGoogle Scholar
  22. Belyayev, A.F., and R.Kh. Kurbangalina (1960). “Influence of the initial temperature on the failure diameter of nitroglycerine and trotil,” Russ. J. Phys. Chem. 34(3), pp. 285–289. [trans. from Zh. Fiz. Khim. 34(3), p. 603 (1960).]Google Scholar
  23. Bobolev, V.K. (1947). Dokl. Akad. Nauk SSSR, 57, p. 789. (in Russian)Google Scholar
  24. Bordzilovskii, S.A., and S.M. Karakhanov (1985). “Effects of loading rate on the predetonation length for TG 50/50,” Comb. Expl. Shock Waves 21(6), pp. 752–755. [trans. from Fiz. Goreniya Vzryva 21(6), pp. 109–113 (1985).]Google Scholar
  25. Bordzilovskii, S.A., S.M. Karakhanov, and V.F. Lobanov (1987). “Modeling the shock initiation of detonation of heterogeneous explosives,” Comb. Expl. Shock Waves 23(5), pp. 624–638. [trans. from Fiz. Goreniya Vzryva 23(5), pp. 132–147 (1987).]Google Scholar
  26. Bordzilovskii, S.A., V.F. Lobanov, and S.M. Karakhanov (1983). “The transition processes at shock initiation of trotil-hexogen and trotil-octogen alloys,” Comb. Expl. Shock Waves 19(4), pp. 499–501. [trans. from Fiz. Goreniya Vzryva (4), pp. 136–139(1983).]Google Scholar
  27. Bowden, F.P., and A.D. Yoffe (1952). Initiation and Growth of Explosion in Liquids and Solids, Cambridge Univ. Press, Cambridge.Google Scholar
  28. Boyko V.M., V.V. Grigoryev, S.A. Zhdan, A.A. Karnaukhov, and A.N. Papyirin (1983). “Acceleration and heating of a metal particle behind a detonation wave.” Comb. Expl. Shock Waves 19(4), pp. 496–499 [trans. from Fiz. Goreniya Vzryva 19(4), pp. 133–136(1983)].Google Scholar
  29. Campbell, J.R., W.C. Davis, J.B. Ramsay, and J.R. Travis (1961). “Shock initiation of solid explosives,” Phys. Fluids 4(4), p. 498.ADSGoogle Scholar
  30. Carnagan, N., and K. Starling (1969). J. Chem. Phys. 51, p. 635.ADSGoogle Scholar
  31. Chaiken, R. (1978). in: Behavior of Dense Media under High Dynamic Pressures, Symp. H.D.P., Gordon and Breach, New York, pp. 41–54.Google Scholar
  32. Chapman, D.L. (1899). “On the rate of explosion in gases.” Phil. Mag. 47, pp. 90–104.MATHGoogle Scholar
  33. Chéret, R. (1974). “Le code ARPEGE: application a l’etude d’um explosif a Taluminium.” Acta Astronautica 1, pp. 893–898.Google Scholar
  34. Chéret, R. (1993). Detonation of condensed Explosives, Springer-Verlag, New York.Google Scholar
  35. Coleburn, N.L, andT.P. Liddiard, Jr (1966). “Hugoniot equations of state of several unreacted explosives,” J. Chem. Phys. 44(5), p. 1929.ADSGoogle Scholar
  36. Cowperthwaite, M., and J. Rosenberg (1976). “A multiple Lagrange gage study of the shock initiation process in cast TOT,” in: Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA (1976), p. 786.Google Scholar
  37. Cowperthwaite, M., and C.M. Tarver (1976). “On hydrodynamic effects of exothermic power in condensed explosives,” Acta Astronautica 3, p. 201.Google Scholar
  38. Damamme, G. (1984). “A new method to simulate shocks, detonations and transitions from shock to detonation,” in: Shock Waves in Condensed Matter—1983 (eds. J.R. Asay, R.A. Graham, and G.-K. Straub) North-Holland, Amsterdam, p. 575.Google Scholar
  39. Dick, J. J. (1986). “Pop-plot and Arrhenius parameters for 110 pentaerythritol tetranitrate single crystals,” in: Shock Waves in Condensed Matter (ed. Y.M. Gupta) Plenum Press, New York, p. 903.Google Scholar
  40. Dick, J. J. (1997). “Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals.” J. Appl. Phys. 81(2), pp. 601–612.ADSGoogle Scholar
  41. Dick, J.J., R.N. Mulford, W.J. Spencer, D.R. Pettit, E. Garcia, and D.C. Shaw (1991). “Shock response of pentaerythritol tetranitrate single crystals.” J. Appl. Phys. 70(7), pp. 3572–3587.ADSGoogle Scholar
  42. Dick, J.J., D.R. Pettit, and W.J. Spencer (1990). “Crystal orientation effects in PETN explosive with 4 GPa shocks.” in: Shock Compression of Condensed Matter1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, pp. 713–716.Google Scholar
  43. Dick, J. J., and J.P. Ritche (1994). “Molecular mechanics modeling of shear and crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate.” J. Appl. Phys. 76(5), pp. 2726–2737.ADSGoogle Scholar
  44. Dick, J.J., M.C. Whitehead, and A.R. Martinez (1994). “Crystal orientation dependence of elastic precursor strength in pentaerythritol tetranitrate.” in: High-Pressure Science and Technology1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross) American Institute of Physics, New York, pp. 1373–1376.Google Scholar
  45. Dremin, A.N., and S.A. Koldunov (1967). “Initiation of detonation by shock waves in cast and pressed trotyl,” Vzryvnoe Delo, 63/20, p. 37. (in Russian)Google Scholar
  46. Dremin, A.N., S.A. Koldunov, and K.K. Shvedov (1971). “Shock wave initiation of detonation in low density explosive charges,” Comb. Expl. Shock Waves 7(1), pp. 87–92 [trans. from Fiz. Goreniya Vzryva 7(1), pp. 103–111 (1971)].Google Scholar
  47. Dremin A.N., P.F. Pokhil, and M.I. Arifov (1960). “The influence of aluminum on the detonation parameters of trotyl.” Dokl.-Chem. Tech. Section, 131(5), pp. 73–75. [trans. from Dokl. Akad. Nauk SSSR 131(5), pp. 1140–1142 (I960).]Google Scholar
  48. Dremin, A.N., S.O. Savrov, V.S. Trofimov, and K.K. Shvedov (1970a). Detonation Waves in Condensed Media, Nauka, Moscow, (in Russian).Google Scholar
  49. Dremin, A.N., K.K. Shvedov, and O.S. Avdonin (1970b). “Compressibility and temperatures of some porous explosives under shock loading,” Comb. Expl. Shock Waves 6(4), pp. 449–455. [trans. from Fiz. Goreniya Vzryva 6(4), pp. 520–529 (1970).]Google Scholar
  50. Delpuech, A., A. Mentic, and B. Pouligny (1986). in: Shock Waves in Condensed Matter, (ed. Y.M. Gupta) Plenum Press, New York, p. 877.Google Scholar
  51. Emanuel, N.M. and D.T. Knorre (1974). A Course of Chemical Kinetics, Vyshaya Shkola, Moscow, (in Russian)Google Scholar
  52. Engelke R. and S.A. Sheffield (1998). “Initiation and propagation of detonation in condensed-phase high explosives.” in: High-Pressure Shock Compression of Solids III (eds. L. Davison and M. Shahinpoor) Springer-Verlag, New York.Google Scholar
  53. Erskine, D.J., L. Green, and C. Tarver (1990). “VISAR wave profile measurements in supra-compressed HE.” in: Shock Compression of Condensed Matter1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, pp. 717–720.Google Scholar
  54. Evstigneev, A.A., M.V. Zhernokletov, and V.N. Zubarev (1976). “Isentropic broadening and equation of state of trotyl explosion products,” Comb. Expl. Shock Waves 12(5), pp. 678–682 [trans. from Fiz. Goreniya Vzryva 12(5), pp. 758–763 (1976)].Google Scholar
  55. Feng, K.K., W.K. Chung, and B.C.-Y. Lu (1985). “Calculation of detonation products by means of the hard-sphere equation of state,” in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, p. 139.Google Scholar
  56. Finger, M., E. Lee, F.H. Helm, B. Hayes, H. Horning, R. McGuire, M. Kahara, and M. Guidry (1976). “The effect of elemental composition on the detonation behavior of explosives.” Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA, pp. 710–722.Google Scholar
  57. Forbes, J.W., D.G. Tasker, R.H. Granholm, and P.K. Gustavson (1990). “Direct observation of shocked explosive crystals immersed in liquids.” in: Shock Compression of Condensed Matter—1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, pp. 709–712.Google Scholar
  58. Fortov, V.E., and A.N. Dremin (1975). “Semiempirical Equation of State of Trinitrotoluene,” Dokl.-Phys. Chem. 222(1), pp. 463–466 [trans. from Dokl. Akad. Nauk SSSR 222(1), pp. 162–165 (1975)].Google Scholar
  59. Frey, R.B. (1981). “Cavity collapse in energetic materials,” in: Proc. Seventh Symp. (International) on Detonation, Report MP 82–334, Naval Surface Warfare Center, White Oak, MD.Google Scholar
  60. Glushak, B.L., S.A. Novikov, A.P. Pogorelov, et al. (1981), “Initiation of solid heterogeneous explosives by shock waves,” Comb. Expl. Shock Waves 17(6), pp. 660–665 [trans. from Fiz. Goreniya Vzryva 17(6), pp. 90–95 (1981)].Google Scholar
  61. Glushak, B.L., S.A. Novikov, and A.P. Pogorelov (1984). “Initiation of solid heterogeneous explosives by shock waves,” Comb. Expl. Shock Waves 20(4), pp. 429–436. [trans. from Fiz. Goreniya Vzryva (4), pp. 77–85 (1984).]Google Scholar
  62. Grady, D.E. (1973). “Experimental analysis of spherical wave propagation.” J. Geophys. Res. 73, pp. 1299–1307.ADSGoogle Scholar
  63. Green, L.G., E.L. Lee, D. Breithaupt, and J. Walton (1988). “The equation of state of PETN detonation products,” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 507–510.Google Scholar
  64. Green, L., E. Nidick, E. Lee, and C. Tarver (1978). “Reactions in PBX-9404 from low amplitude shock waves,” in: Behavior of Dense Media under High Dynamic Pressures, Symp. H.D.P., Gordon and Breach, New York, p. 115.Google Scholar
  65. Guang Gao, R. Pandey, and A.B. Kunz (1993). “Ab inito study of electronic structure of RDX molecular crystal.” in: Structure and properties of energetic materials (eds. D.H. Liebenberg, R.W. Armstrong, and J. J. Gumem) MRS Proceedings 296, Materials Research Society, Pittsburgh, pp. 149–154.Google Scholar
  66. Halleck, P.M., and J. Wackerle (1976). “Dynamic elastic-plastic properties of single-crystal pentaerythritol tetranitrate.” J. Appl. Phys. 47(3), pp. 976–982.ADSGoogle Scholar
  67. Hardesty, D.R. (1976). Combust. Flame 27, p. 229.Google Scholar
  68. Heuzé, O., P. Bauer, H.N. Presles, and C. Brochet (1985). “The equation of state of detonation products and their incorporation into the quatuor code,” in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, pp. 762–769.Google Scholar
  69. Hobbs, M.X., and M.R. Baer (1993). “Calibrating the BKW-EOS with a large product species data base and measured C-J properties.” Proceedings Tenth International Detonation Symposium. Report ONR 33395–12, U.S. Office of Naval Research, Arlington, VA, pp. 409–418.Google Scholar
  70. Von Holle, W.G. (1984). “Shock wave diagnostics by time-resolved infrared radiometry and non-linear Raman spectroscopy,” in: Shock Waves in Condensed Matter— 1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub). North-Holland, Amsterdam, p. 283.Google Scholar
  71. Howe, P., R. Frey, B. Taylor, and V. Boyle (1976). “Shock Initiation and the Critical Energy Concept,” in: Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA, (1976), p. 11.Google Scholar
  72. Nyukhin, V.S., P.F. Pokhil, O.K. Rozanov, and N.S. Shvedova (1960). “Measurements of shock adiabates of cast trotyl, crystalline hexogen and nitromethane,” Sov. Phys.-Dokl. 5(2), pp. 337–340. [trans. from Dokl. Akad. Nauk SSSR 131(4), pp. 793–796(1960).]ADSGoogle Scholar
  73. Imkhovik, N.A., and V.S. Soloviev (1995). “Oxidation of powdered aluminium in detonation products of condensed high explosives. ”Proceedings of the Twenty-First International Pyrotechnics Seminar. 11–15 Sept., 1995. Moscow. Russia, pp. 316–331. (inRussian)Google Scholar
  74. Johansson, C.H., and P.A. Persson (1970). Detonics of High Explosives, Academic Press, New York.Google Scholar
  75. Johnson, J.N. (1988). “Hot-spot reaction in unsustained shocks,” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, p. 527.Google Scholar
  76. Johnson, J.N., P.K. Tang, and C.A. Forest (1985). “Shock-wave initiation of heterogeneous reactive solids,” J. Appl. Phys. 57(9), p. 4323.ADSGoogle Scholar
  77. Jouguet, E. (1905). J. Math. Pure Appliq. 1, p. 347. (in French)Google Scholar
  78. Kanel, G.I. (1977). “On experimental determining the kinetics of relaxation processes at shock compression of condensed matter.” Appl. Mech. Tech. Phys. 18(5), pp. 685–689 [trans. from: Zh. Prikl. Mekh. Tekh. Fiz. 18(5), pp. 117–122 (1977)].ADSGoogle Scholar
  79. Kanel, G.I. (1978). “Kinetics of the decomposition of cast trotyl in shock waves.” Comb. Expl. Shock Waves 14(1), pp. 88–91 [trans. from Fiz. Goreniya Vzryva 14(1), pp. 113–117(1978)].Google Scholar
  80. Kanel, G.I., and A.N. Dremin (1977). “Decomposition of cast trotyl in shock waves.” Comb. Expl. Shock Waves 12(1), pp. 71–77 [trans. from Fiz. Goreniya Vzryva 13(1), pp. 85–92 (1977)].Google Scholar
  81. Kennedy, J.E., and J.W. Nunziato (1976). “Shock-wave evolution in a chemically reacting solid,” J. Mech. Phys. Solids 29(2/3), p. 107.Google Scholar
  82. Khariton, Yu.B. (1947). Voprosy Teorii Vzryvchatih Veschestv, No.1, USSR Academy of Sciences, Moscow, (in Russian)Google Scholar
  83. Khasainov, B.A., A.B. Attetkov, and A.A. Borisov (1996). “Shock-wave initiating of porous energetic materials and a viscous-plastic model of hot spots.” Chem. Phys. 15(7), pp. 53–125.Google Scholar
  84. Khasainov, B.A., A.A. Borisov, B.S. Ermolayev, and A.I. Korotkov (1980). “Self-consistent model of shock-wave initiation of detonation in high-density HE,” in: The Chemical Physics of the Combustion and Explosion Processes. Detonation. (Proceedings of 6 th All-Union Symposium on Combustion and Explosion), Institute of Chemical Physics, Chernogolovka, p. 52. (in Russian)Google Scholar
  85. Khasainov, B.A., B.S. Ermolaev, A.A. Borisov, and A.I. Korotkov (1979). “Effect of exothermic reactions downstream of the C-J plane on detonation stability.” Acta Astronautica 6, pp. 557–568.Google Scholar
  86. Khasainov, B.A., and B. Veyssiere (1988). “Steady, plane, double-front detonations in gaseous detonable mixtures containing a suspension of aluminium particles.” Dynamics of explosions. V. 114. Progress in Astronautics and Aeronautics. AIAA. Washington, pp. 284–299.Google Scholar
  87. Kim, G.Kh. (1984). Viscosity measurement for shock-compressed water. J. Appl. Mech. Tech. Phys. 25(5), pp. 692–695 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 25(5), pp. 44–48].ADSGoogle Scholar
  88. Kipp, M.E., J.W. Nunziato, and R.E. Setchell (1981). “Hot spot initiation of heterogeneous explosives,” in: Proc. Seventh Symp. (International) on Detonation, Report MP 82–334, Naval Surface Warfare Center, White Oak, MD.Google Scholar
  89. Kitaigorodskii, A.I. (1971). Molecular Crystals. Nauka, Moscow, (in Russian).Google Scholar
  90. Koldunov, S.A., K.K. Shvedov, and A.N. Dremin (1973). “Decomposition of porous explosives under the effect of shock waves,” Comb. Expl. Shock Waves 9(2), pp. 255–262 [trans. from Fiz. Goreniya Vzryva 9(2), pp. 295–304 (1973)].Google Scholar
  91. Kondrikov, B.N., and A.I. Sumin (1987). “Equation of state of a gas at high pressure,” Comb. Expl. Shock Waves 23(1), pp. 105–113 [trans. from Fiz. Goreniya Vzryva 23(1), pp. 114–122(1987)].Google Scholar
  92. Kovalev, Yu.M. (1984). “Equations of states and temperature of shock compressed crystalline explosives,” Comb. Expl. Shock Waves 20(2), pp. 219–223 [trans. from Fiz. Goreniya Vzryva (2), pp. 102–107(1984)].MathSciNetGoogle Scholar
  93. Kurbangalina, R.Kh. (1969). “A dependence of the detonation failure diameter of liquid explosives on the content of powders,” J. Appl. Mech. Tech. Phys. 10(4), pp. 656–659 [trans. from: Zh. Prikl. Mekh. Tekh. Fiz. 10(4), pp. 133–136 (1969)].ADSGoogle Scholar
  94. Kuznetsov, N.M., and V.A. Kopotev (1986). “Detonation in a relaxing gas and relaxation instability.” Comb. Expl. Shock Waves 22(5), pp. 563–573 [trans. from Fiz. Goreniya Vzryva 22(5) pp. 75–86 (1986)].Google Scholar
  95. Kuznetsov N.M., and V.A. Kopotev (1986). “Detonation in a relaxing gas and relaxation instability,” Comb., Expl., Shock Waves, 22(2), pp. 219–230.Google Scholar
  96. Kuznetsov, N.M., and K.K. Shvedov (1966). “Equation of state of the detonation products of hexogen,” Comb. Expl. Shock Waves 2(4), pp. 52–58 [trans. from Fiz. Goreniya Vzryva 2(4), pp. 85–96 (1966)].Google Scholar
  97. Kuznetsov, N.M., and K.K. Shvedov (1969). “Detonation and shock adiabats for hexogen products,” Comb. Expl. Shock Waves 5(3), pp. 52–58 [trans. from Fiz. Goreniya Vzryva 5(3), pp. 362–369 (1969)].Google Scholar
  98. Lee, E.L., R.H. Sanborn, and H.D. Stromberg (1970). “Thermal decomposition of high explosives at static pressures 10–50 kilobars,” in: Proc. Fifth Symp. (International) on Detonation, Report ACR-184, Office of Naval Research, Arlington, VA, (1970), p. 331.Google Scholar
  99. Lee, E.L., and C.M. Tarver (1980). “Phenomenological model of shock initiation in heterogeneous explosives,” Phys. Fluids. 23(2), p. 2362.ADSGoogle Scholar
  100. Lysne, P.C., and D.R. Hardesty (1973). “Fundamental equation of state of liquid nitromethane to 100 kbar,” J. Chem. Phys. 59(12), p. 6512.ADSGoogle Scholar
  101. Lobanov, V.F. (1980). “Simulation of detonation waves in heterogeneous condensed HE,” Fiz. Goreniya Vzryva 16(6), pp. 113–116 (1980).Google Scholar
  102. Lobanov, V.F. (1985). “Dynamics of the basic initiating-wave parameters for TG 50/50,” Comb. Expl. Shock Waves 21(6), pp. 756–760. [trans. from Fiz. Goreniya Vzryva 21(6), pp. 113–118(1985).]Google Scholar
  103. Lobanov, V.F. (1986). “Initiating-wave parameter determination for TG 50/50,” Comb. Expl. Shock Waves 22(5), pp. 589–594 [trans. from Fiz. Goreniya Vzryva 22(5), pp. 104–111(1986)].Google Scholar
  104. Lubyatinsky, S.N., and B.G. Loboiko (1996). “Reaction zone measurements in detonating aluminized explosives.” in: Shock Compression of Condensed Matter— 1995 (eds. S.C. Schmidt and W.C. Tao) American Institute of Physics, New York, pp. 779–782.Google Scholar
  105. Mader, C.L. (1979) Numerical Modelling of Detonations, University of California Press, Berkeley, CA.Google Scholar
  106. Marsh, S.P., Editor (1980). LASL Shock Hugoniot Data. University of California Press, Berkeley, CA.Google Scholar
  107. McQueen, R., S. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter (1970). “The Equation of State of Solids from Shock Wave Studies.” in: High-Velocity Impact Phenomena (ed. R. Kinslow) Academic Press, New York, pp. 293–417.Google Scholar
  108. Medvedev A.E., A.V. Fedorov, and V.M. Fomin (1982). “Mathematical modeling of ignition of metal particles ignition in the high-temperature flow behind a shock wave.” Comb. Expl. Shock Waves 18(3), pp. 261–265 [trans. from Fiz. Goreniya Vzryva 18(3), pp. 5–9 (1982)].Google Scholar
  109. Merzhanov, A.G., V.V. Barzykin, and V.T. Gontkovskaya (1963). “A problem of local thermal explosion,” Dokl. Akad. Nauk SSSR 148(2), p. 380.Google Scholar
  110. Moulard, H., J.W. Kury, and A. Delclos (1985). “The effect of RDX particle size on the shock sensitivity of cast PBX formulation,” in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, pp. 902–913.Google Scholar
  111. Nigmatulin, R.N., (1987). Dynamics of Multiphase Medium, Nauka, Moscow, (in Russian)Google Scholar
  112. Nunziato, J.W. (1973). “One-dimentional shock waves in a chemically reacting mixture of elastic materials,” J. Chem. Phys. 58(3), p. 961.ADSGoogle Scholar
  113. Nutt, G.L., and L.M. Erickson (1984). “Reactive flow Lagrange analysis in RX-26-AF,” in: Shock Waves in Condensed Matter—1983, (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, (1984), p. 605.Google Scholar
  114. Olinger, B., and H.G. Cady (1976). “The hydrostatic compression of explosives and detonation products to 10 GPa (100 kbars) and their calculated shock compression: results for PETN, TATB, CO2 and H2O,” in: Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA, pp. 700–709Google Scholar
  115. Olinger, B., P.M. Halleck, and H.G. Cady (1975). “The isothermal linear and volume compression of pentaerythritol (PETN) to 10 GPa (100 kbar) and the calculated shock compression,” J. Chem. Phys. 62(1), p. 4480.ADSGoogle Scholar
  116. Partom, Y. (1988). “Modeling the crossover in reaction rate for micronized TATB,” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, (1988), p. 535.Google Scholar
  117. Pepekin, V.I., M.N. Makhov, and A.Ya. Apin (1972). “The reactions of boron in the presence of an explosion.” Comb. Expl. Shock Waves 8(1), pp. 109–111 [trans. from Fiz. Goreniya Vzryva 8(1), pp. 135–138 (1972)].Google Scholar
  118. Sandusky, H.W., B.C. Beard, B.C. Glancy, W.L. Elban, and R.W. Armstrong (1993). “Comparison of deformation and shock reactivity for single crystals of RDX and ammonium Perchlorate.” in: Structure and properties of energetic materials (eds. D.H. Liebenberg, R. W. Armstrong, and J.J. Gilman) MRS Proceedings 296, Materials Research Society, Pittsburgh, pp. 93–98.Google Scholar
  119. Seaman, L. (1974). “Lagrangian analysis for multiple stress or velocity gages in attenuating waves.” J. Appl. Phys. 45(10), pp. 4303–4314.ADSGoogle Scholar
  120. Seay, G.E., and L.B. Seely (1961). “Initiation of a low-density PETN pressing by a plane shock wave,” J. Appl. Phys. 32(6), p. 1092.ADSGoogle Scholar
  121. Seitz, W.L. (1984). “Short-duration shock initiation of triaminotrinitrobenzene,” in: Shock Waves in Condensed Matter—1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, (1984), p. 531.Google Scholar
  122. Setchell, R.E. (1981). “Ramp-wave initiation of granular explosives,” Combust Flame 43(3), p. 255.Google Scholar
  123. Sharma, J., J.W. Forbes, C.S. Coffey, and T.P. Liddiard (1988). “The nature of reaction sites and sensitization centers in TATB and TNT.” in: Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 565–568.Google Scholar
  124. Sheffield, S.A., D.D. Bloomquist, and C.M. Tarver (1984). “Subnanosecond measurements of detonation fronts in solid high explosives,” J. Chem. Phys. 80(8), p. 3831.ADSGoogle Scholar
  125. Shipitsyn, L.A. (1980). “Thermal explosion of octogen at high pressures,” Comb. Expl. Shock Waves 16(6), pp. 677–679 [trans. from Fiz. Goreniya Vzryva 16(6), pp. 85–87(1984)].Google Scholar
  126. Shvedov, K.K. (1987). “Detedrmination of the Chapman-Jouguet parameters in the detonation of condensed explosives,” Comb. Expl. Shock Waves 23(4), pp. 464–474 [trans. from Fiz. Goreniya Vzryva 23(4), pp. 94–104 (1987)].MathSciNetGoogle Scholar
  127. Shvedov, K.K., and Koldunov, S.A. (1980) “On decomposition of the tetranitromethane in shock waves,” in: “Chemical Physics of Processes of Combustion and Explosion. Detonation” (Proceedings of 6th All-Union Symposium on Combustion and Explosion), published by Institute of Chemical Physics, Chernogolovka, p. 60. (in Russian).Google Scholar
  128. Simpson, R.L., F.H. Helms, and J.W. Kury (1993). Propellants, Explosives, and Pyrotechnics 18, p. 150.Google Scholar
  129. Soloviev, V.S., S.G. Andreev, M.M. Boyko, and A.I. Chernov (1980a). “On Detonation of HE with After-Burning.” Proceedings of VI Soviet Symposium on Combustion and Explosion, Detonation, Institute of Chemical Physics, Chernogolovka, pp. 21–23. (in Russian).Google Scholar
  130. Soloviev, V.S., V.V. Lazarev, and S.G. Andreev (1983). “Ignition of crystalline hexogen at adiabatic compression of adjoining gas cavity,” Fiz. Goreniya Vzryva (4), p. 130 (1983).Google Scholar
  131. Soloviev, V.S., I.F. Kobylkin, S.G. Andreev, et al. (1980b). “Features of decomposition of explosives in weak shock waves,” in: The Chemical Physics, of the Combustion and Explosion Processes. Detonation, (Proceedings of 6 All-Union Symposium on Combustion and Explosion), Chernogolovka, p. 48. (in Russian)Google Scholar
  132. Sophy, J. (1966). C. R. Acad. Sci. France 263C, p. 698.Google Scholar
  133. Stresau, R.H., and J.E. Kennedy (1976). “Critical conditions for shock initiation of detonation in real system,” in: Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA, pp. 68–75.Google Scholar
  134. Tao, W.C., C.M. Tarver, and D.R. Breithaupt (1992). “Fundamental Chemical Interactions in Metal-Filled Composite Explosives.” in: Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker) North-Holland, Amsterdam, pp. 655–658.Google Scholar
  135. Tarver, C.M., L.M. Erickson, and N.L. Parker (1984). “Shock initiation, detonation wave propagation and metal acceleration measurements and calculations for RX-26-AF,” in: Shock Compression of Condensed Matter1983 (eds. JR. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, p. 609.Google Scholar
  136. Tarver, C.M. and J.O. Hallquist, (1981). “Modeling two-dimensional shock initiation and detonation wave phenomena,” in: Proc. Seventh Symp. (International) on Detonation, Report MP 82–334, Naval Surface Warfare Center, White Oak, MD, (1981) p. 488.Google Scholar
  137. Taylor, P.A. (1985). “The effects of materil microstructure on the shock sensitivity of porous granular explosives,” in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, pp. 26–34.Google Scholar
  138. Todes, O.M. (1939). Zh. Fiz. Khim. 13, p. 868. (in Russian)Google Scholar
  139. Utkin, A. V., and G.I. Kanel (1986). “Investigations of the decomposition kinetics for TNT and retarded RDX in the shock and detonation waves.” in: Detonation and Shock Waves. Proceedings of VIII Soviet Symposium on Combustion and Explosion, Institute of Chemical Physics, Chernogolovka, pp. 13–16. (in Russian)Google Scholar
  140. Utkin, A.V., G.I. Kanel, A.A. Bogach, and S.V. Razorenov (2000a). “Macrokinetics of the energy release in high explosives containing nano-size boron particles.” in: Shock Compression of Condensed Matter—1999 (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, pp. 869–872.Google Scholar
  141. Utkin, A. V., G.I. Kanel, and V.E. Fortov (1989). “Empirical macrokinetics of the decomposition of a desensitized hexogen in shock and detonation waves,” Comb., Expl., Shock Waves, 25(5), pp. 625–632Google Scholar
  142. Utkin, A. V., S.V. Pershin, and V.E. Fortov (2000b). “Change in structure of a detonation wave in trinitroethyl-4,4,4-trinitrobutyrate with initial density increase.” Dofd. — Phys. 45(10), pp. 520–522 [trans. from Dokl. Akad Nauk 374(4), pp. 486–488 (2000)].Google Scholar
  143. Vanpoperynghe, J., J. Sorel, J. Aveille, and J. Adenis (1985). in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, p. 238.Google Scholar
  144. Vantine, H.C., R.B. Rainsberger, D. Curtis, R.S. Lee, M. Cowperthwaite, and J.J. Rosenberg (1981). “The accuracy of reaction rates inferred from Lagrange analysis and in-situ gauge measurements,” in: Proc. Seventh Symp. (International) on Detonation, Report MP 82–334, Naval Surface Warfare Center, White Oak, MD,p.466.Google Scholar
  145. Vorthman, J., and J. Wackerle (1984). “Multiple-wave effects on explosives decomposition rates,” in: Shock Compression of Condensed Matter1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, (1984), p. 613.Google Scholar
  146. Voskoboinikov, I.M., A.N. Afanasenkov, and V.M. Bogomolov (1967). “Generalized Hugoniot for organic liquids,” Comb. Expl. Shock Waves 3(4), pp. 359–364. [trans. from Fiz. Goreniya Vzryva 3(4), pp. 585–593 (1967).]Google Scholar
  147. Voskoboinikov, I.M., V.M. Bogomolov, and A.Ya. Apin (1968). “Calculation of the initiation pressure of shock-initiated homogeneous explosives,” Comb. Expl. Shock Waves 4(1), pp. 26–28 [trans. from Fiz. Goreniya Vzryva 4(1), pp. 45–49 (1968)].Google Scholar
  148. Voskoboinikov, I.M. and Gogulya, M.F. (1984). “Luminescence of shock front in liquid behind detonating HE charge,” Sov. J. Chem. Phys. 3(7), p. 1036 [trans. from Khim. Fiz. 3(7), pp. 1036–1041 (1984)].Google Scholar
  149. Voskoboinikov, I.M., A.N. Kiryushin, A.N. Afanasenkov, and N.F. Voskoboinikova (1974). in: Proc. of the 1 st All-Union Symp. on Pulsed Pressures, VNIIFTRI, Moscow, vol. 1.Google Scholar
  150. Voskoboinikov, I.M., and N.F. Voskoboinikova (1988). “Measurements of the transformation time in detonation wave for condensed explosives,” Sov. J. Chem. Phys. 7(3), p. 406.Google Scholar
  151. Wackerle, J., J. Johnson, and P. Halleck (1976). “Shock initiation of high-density PETN,” in: Proc. Sixth Symp. (International) on Detonation, Report ACR-221, Office of Naval Research, Arlington, VA, p. 20.Google Scholar
  152. Wackerle, J., R.L. Rabie, M.J. Ginsburg, and A.B. Anderson (1978). “A shock initiation study of PBX-9404,” in: Behavior of Dense Media under High Dynamic Pressures, Symp. H.D.P., Gordon and Breach, New York, p. 127.Google Scholar
  153. Walker, E.H. (1985). “Derivation of the p 2 T detonation criterion,” in: Proc. Eighth Symp. (International) on Detonation, Report NSWC MP 86–194, Naval Surface Weapons Center, White Oak, MD, pp. 1119–1125.Google Scholar
  154. Walker, F.E., and R.J. Wasley (1969). Explosivstoffe, 17(1), p. 9.Google Scholar
  155. Yarger, F.L., and B. Olinger (1970). “Compression of solid nitromethane to 15 GPa at 298 K,” J. Chem. Phys., 85(3) p. 1534.ADSGoogle Scholar
  156. Young, D. (1968). Kinetics ofDecomposition of Solids, Mir, Moscow, (in Russian)Google Scholar
  157. Yoo, C.S., N.C. Holmes, P.C. Souers, C.J. Wu, F.H. Ree, and J.J. Dick (2000). “Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal.” J. Appl. Phys. 88(1), pp. 70–74.ADSGoogle Scholar
  158. Zel’dovich, Ya.B. (1940). “On the theory of propagation of detonation in gases,” Zh. Eksp. Teor. Fiz., 10, p. 542. (in Russian)Google Scholar
  159. Zel’dovich, Ya.B. and Kompaneetz, A.S. (1955) Detonation Theory, Gostekhizdat, Moscow (English translation: Academic Press, New York, 1960).Google Scholar
  160. Zel’dovich, Ya.B., and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. I (1966) and Vol. II (1967), Academic Press, New York. Reprinted in a single volume by Dover Publications, Mineola, New York (2002).Google Scholar
  161. Zharkov, V.N., and V.A. Kalinin (1971) Equations of State for Solids at High Pressures and Temperatures, Consultants Bureau, New York [Trans. from High Pressure and Temperature Equations of State of Metals, Nauka, Moscow (1968)].Google Scholar
  162. Zhernokletov, M.V., V.N. Zubarev, and G.S. Telegin (1969). “Expansion isentropes of explosion products of condensed HE,” J. Appl. Mech. Tech. Phys. 10(4), pp. 650–655 [trans. from Zh. Prikl. Mekh. Tekh. Fiz. 10(4), p. 127 (1969)].ADSGoogle Scholar
  163. Zubarev, V.N., and A.A. Evstigneev (1984). “Equations of state of explosion products of condensed HE,” Comb. Expl. Shock Waves 20(6), pp. 699–710 [trans. from Fiz. Goreniya Vzryva 20(6), pp. 114–126 (1984)].Google Scholar
  164. Zubarev, V.N., and A.A. Evstigneev (1984). “On possible causes of the scattering of experimental characteristics of detonation wave,” Sov. Phys.-Dokl. 29(8), pp. 635–636 [trans. from Dokl. Akad. Nauk SSSR 277(4), p. 845 (1984)].ADSGoogle Scholar
  165. Zubarev, V.N., and V.Ya. Vaschenko (1963). Sov. Phys.-Solid State 5(3), pp. 653–655 [trans. from Fiz. Tverd. Tela 5(3), pp. 886–890 (1963)].Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • G. I. Kanel
    • 1
  • V. E. Fortov
    • 2
  • S. V. Razorenov
    • 3
  1. 1.Institute for High Energy DensitiesRussian Academy of Sciences, IVTANMoscowRussia
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations