Partial Differential Equations III pp 359-465 | Cite as
Nonlinear Hyperbolic Equations
Chapter
Abstract
Here we study nonlinear hyperbolic equations, with emphasis on quasi-linear systems arising from continuum mechanics, describing such physical phenomena as vibrating strings and membranes and the motion of a compressible fluid, such as air.
Keywords
Weak Solution Smooth Solution Hyperbolic System Rarefaction Wave Riemann Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [Al]S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Birkhäuser, Boston, 1995.MATHCrossRefGoogle Scholar
- [AHPR]A. Anile, J. Hunter, P. Pantano, and G. Russo, Ray Methods for Nonlinear Waves in Fluids and Plasmas, Longman, New York, 1993.MATHGoogle Scholar
- [Ant]S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly 87(1980), 359–370.MathSciNetMATHCrossRefGoogle Scholar
- [Ba]J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.MATHGoogle Scholar
- [BKM]T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys. 94(1984), 61–66.MathSciNetMATHCrossRefGoogle Scholar
- [Bea]M. Beals, Propagation and Interaction of Singularities in Nonlinear HyperbolicProblems, Birkhäuser, 1989.MATHCrossRefGoogle Scholar
- [BB]M. Beals and M. Bezard, Low regularity solutions for field equations, Preprint, 1995.Google Scholar
- [BMR]M. Beals, R. Melrose, and J. Rauch (eds.), Microlocal Analysis and Nonlinear Waves, IMA Vols, in Math, and its Appl., Vol. 30, Springer-Verlag, New York, 1991.MATHGoogle Scholar
- [Bon]J. Bony, Calcul symbolique et propagation des singularities pour les équations aux dérivées nonlinéaires, Ann. Sci. Ecole Norm. Sup. 14(1981), 209–246.MathSciNetMATHGoogle Scholar
- [BW]P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Zeit. 176(1981), 87–121.MATHCrossRefGoogle Scholar
- [BCG3]R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differential Systems, MSRI Publ. #18, Springer-Verlag, New York, 1991.MATHCrossRefGoogle Scholar
- [Cafl]R. Caflisch, A simplified version of the abstract Cauchy-Kowalevski theorem with weak singularity, Bull. AMS 23(1990), 495–500.MathSciNetMATHCrossRefGoogle Scholar
- [CRS]C. Carasso, M. Rascle, and D. Serre, Etude d’un modèle hyperbolique en dynamique des cables, Math. Mod. Numer. Anal. 19(1985), 573–599.MathSciNetMATHGoogle Scholar
- [CIP]C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994.MATHGoogle Scholar
- [CBr]Y. Choquet-Bruhat, Theoreme d’existence pour certains systèmes d’équations aux derivées partielles non linéaires, Acta Math. 88(1952), 141–225.MathSciNetCrossRefGoogle Scholar
- [ChM]A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979.MATHCrossRefGoogle Scholar
- [Chr]D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, CPAM 39(1986), 267–282.MathSciNetMATHGoogle Scholar
- [CCS]K. Chueh, C. Conley, and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math. J. 26(1977), 372–411.MathSciNetCrossRefGoogle Scholar
- [CS1]C. Conley and J. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, CPAM 24(1971), 459–472.MathSciNetMATHGoogle Scholar
- [CS2]C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, J. Math. Pures et Appl. 54(1975), 429–444.MathSciNetGoogle Scholar
- [CwS]E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasilinear first order equations in several space variables, CPAM 19(1966), 95–105.MathSciNetMATHGoogle Scholar
- [CF]R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Wiley, New York, 1948.MATHGoogle Scholar
- [Daf 1]C. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Rat. Mech. Anal. 52(1973), 1–9.MathSciNetMATHCrossRefGoogle Scholar
- [Daf2]C. Dafermos, Hyperbolic systems of conservation laws, pp. 25–70 in [Ba].Google Scholar
- [DD]C. Dafermos and R. DiPerna, The Riemann problem for certain classes of hyperbolic conservation laws, J. Diff. Eqs. 20(1976), 90–114.MathSciNetMATHCrossRefGoogle Scholar
- [DH]C. Dafermos and W. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Rat. Mech. Anal. 87(1985), 267–292.MathSciNetMATHCrossRefGoogle Scholar
- [Dio]P. Dionne, Sur les problèmes de Cauchy bien posés, J. Anal. Math. 10(1962–63), 1–90.MathSciNetMATHCrossRefGoogle Scholar
- [DiPl]R. DiPerna, Existence in the large for nonlinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52(1973), 244–257.MathSciNetMATHCrossRefGoogle Scholar
- [DiP2]R. DiPerna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 60(1975), 75–100.MathSciNetMATHCrossRefGoogle Scholar
- [DiP3]R. DiPerna, Uniqueness of solutions of conservation laws, Indiana Math. J. 28(1979), 244–257.MathSciNetCrossRefGoogle Scholar
- [DiP4]R. DiPerna, Convergence of approximate solutions to conservation laws, Arch.Rat. Mech. Anal. 82(1983), 27–70.MathSciNetMATHCrossRefGoogle Scholar
- [DiP5]R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91(1983), 1–30.MathSciNetMATHCrossRefGoogle Scholar
- [DiP6]R. DiPerna, Compensated compactness and general systems of conservation laws, Trans. AMS 292(1985), 383–420.MathSciNetCrossRefGoogle Scholar
- [Ev]L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. #74, AMS, Providence, R. I., 1990.MATHGoogle Scholar
- [FS]J. Fehribach and M. Shearer, Approximately periodic solutions of the elastic string equations, Appl. Anal. 32(1989), 1–14.MathSciNetMATHCrossRefGoogle Scholar
- [Foy]R. Foy, Steady state solutions of hyperbolic systems of conservation laws with viscosity terms, CPAM 17(1964), 177–188.MathSciNetMATHGoogle Scholar
- [Frei]H. Freistühler, Dynamical stability and vanishing viscosity: a case study of aGoogle Scholar
- non-strictly hyperbolic system, CPAM 45(1992), 561–582.Google Scholar
- [Fdm]A. Friedman, A new proof and generalizations of the Cauchy-Kowalevski theorem, Trans. AMS 98(1961), 1–20.MATHCrossRefGoogle Scholar
- [FL1]K. Friedrichs and P. Lax, On symmetrizable differential operators, Proc. Symp.Pure Math. 10(1967) 128–137.MathSciNetGoogle Scholar
- [FL2]K. Friedrichs and P. Lax, Systems of conservation laws with a convex extension, Proc. Natl. Acad. Sci. USA 68(1971), 1686–1688.MathSciNetMATHCrossRefGoogle Scholar
- [Gbl]P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.MATHGoogle Scholar
- [Gb2]P. Garabedian, Stability of Cauchy’s problem in space for analytic systems of arbitrary type, J. Math. Mech. 9(1960), 905–914.MathSciNetMATHGoogle Scholar
- [Gel]I. Gel’fand, Some problems in the theory of quasilinear equations, Usp. Mat.Nauk 14(1959), 87–115; AMS Transi. 29(1963), 295–381.Google Scholar
- [Gil]J. Glimm, Solutions in the large for nonlinear systems of equations, CPAM 18(1965), 697–715.MathSciNetMATHGoogle Scholar
- [G12]J. Glimm, Nonlinear and stochastic phenomena: the grand challenge for partial differential equations, SIAM Review 33(1991), 626–643.MathSciNetMATHCrossRefGoogle Scholar
- [GL]J. Glimm and P. Lax, Decay of Solutions of Systems of Nonlinear HyperbolicConservation Laws, Memoirs AMS #101, Providence, R. I., 1970.Google Scholar
- [Gril]M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math. 132(1990), 485–509.MathSciNetMATHCrossRefGoogle Scholar
- [Hof 1]D. Hoff, Invariant regions for systems of conservation laws, TAMS 289(1985), 591–610.MathSciNetMATHCrossRefGoogle Scholar
- [Hof2]D. Hoff, Global existence for ID compressible, isentropic Navier-Stokes equations with large initial data, TAMS 303(1987), 169–181.MathSciNetMATHGoogle Scholar
- [Hop]E. Hopf, The partial differential equation ut + uux — γuxx CPAM 3(1950), 201–230.MathSciNetMATHGoogle Scholar
- [H]L. Hörmander, Non-linear Hyperbolic Differential Equations. Lecture Notes, Lund Univ., 1986–87.Google Scholar
- [HKM]T. Hughes, T. Kato, and J. Marsden, Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rat. Mech. Anal. 63(1976), 273–294.MathSciNetGoogle Scholar
- [HM]T. Hughes and J. Marsden, A Short Course in Fluid Mechanics, Publish or Perish, Boston, 1976.MATHGoogle Scholar
- [JMR]J. Joly, G. Metivier, and J. Rauch, Non linear oscillations beyond caustics, Pre-publication 94–14, IRMAR, Rennes, France, 1994.Google Scholar
- [JRS]D. Joseph, M. Renardy, and J. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal 87(1985), 213–251.MathSciNetMATHCrossRefGoogle Scholar
- [K]T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Springer LNM 448(1974), 25–70.Google Scholar
- [KK1]B. Keyfitz and H. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws, J. Diff. Eqs. 27(1978), 444–476.MathSciNetMATHCrossRefGoogle Scholar
- [KK2]B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal. 72(1980), 219–241.MathSciNetMATHCrossRefGoogle Scholar
- [KK3]B. Keyfitz and H. Kranzer (eds.), Nonstrictly Hyperbolic Conservation Laws, Contemp. Math #60, AMS, Providence, R. I., 1987.MATHGoogle Scholar
- [KS]B. Keyfitz and M. Shearer (eds.), Nonlinear Evolution Equations that ChangeType, IMA Vol. in Math, and its Appl., Springer-Verlag, New York, 1990.MATHGoogle Scholar
- [Kic]S. Kichenassamy, Nonlinear Wave Equations, Marcel Dekker, New York, 1995.Google Scholar
- [Kl]S. Klainerman, Global existence for nonlinear wave equations, CPAM 33(1980), 43–101.MathSciNetMATHGoogle Scholar
- [Kot]D. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, /. Math. Anal. Appl. 35(1971), 563–576.MathSciNetMATHCrossRefGoogle Scholar
- [LL]L. Landau and E. Lifshitz, Fluid Mechanics, Course ofTheoretical Physics, Vol. 6, Pergammon Press, New York, 1959.Google Scholar
- [L1]P. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, CPAM 7(1954), 159–193.MathSciNetMATHGoogle Scholar
- [L2]P. Lax, Hyperbolic systems of conservation laws II, CPAM 10(1957), 537–566.MathSciNetMATHGoogle Scholar
- [L3]P. Lax, The Theory of Hyperbolic Equations, Stanford Lecture Notes, 1963.Google Scholar
- [L4]P. Lax, Shock waves and entropy, pp. 603–634 in [Zar].Google Scholar
- [L5]P. Lax, The formation and decay of shock waves, Amer. Math. Monthly 79(1972), 227–241.MathSciNetMATHCrossRefGoogle Scholar
- [L6]P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Reg. Conf. Ser. Appl. Math. #11, SIAM, 1973.MATHCrossRefGoogle Scholar
- [Lind]W. Lindquist (ed.), Current Progress in Hyperbolic Systems: Riemann Problemsand Computations, Contemp. Math., Vol. 100, AMS, Providence, R. I., 1989.MATHGoogle Scholar
- [Liu1]T.-P. Liu, The Riemann problem for general 2×2 conservation laws, Trans. AMS 199(1974), 89–112.MATHGoogle Scholar
- [Liu2]T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff.Eqs. 18(1975), 218–234.MATHCrossRefGoogle Scholar
- [Liu3]T.-P. Liu, Uniqueness of weak solutions of the Cauchy problem for general 2×2 conservation laws, J. Diff Eqs. 20(1976), 369–388.MATHCrossRefGoogle Scholar
- [Liu4]T.-P. Liu, Solutions in the large for the equations of non-isentropic gas dynamics, Indiana Math. J. 26(1977), 147–177.MATHCrossRefGoogle Scholar
- [Liu5]T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57(1977), 135–148.MathSciNetMATHCrossRefGoogle Scholar
- [Liu6]T.-P. Liu, Nonlinear Stability of Shock Waves for Viscous Conservation Laws, Memoirs AMS #328, Providence, R. I., 1985.Google Scholar
- [LS]T.-P. Liu and J. Smoller, The vacuum state in isentropic gas dynamics, Adv. Appl.Math. 1(1980), 345–359.MathSciNetMATHCrossRefGoogle Scholar
- [Mj]A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in SeveralSpace Variables, Appl. Math. Sci. #53, Springer-Verlag, 1984.MATHCrossRefGoogle Scholar
- [Mj2]A. Majda, The Stability of Multi-dimensional Shock Fronts. Memoirs AMS, #275, Providence, R. I., 1983.Google Scholar
- [Mj3]A. Majda, The Existence of Multi-dimensional Shock Fronts. Memoirs AMS, #281, Providence, R. I., 1983.Google Scholar
- [Mj4]A. Majda, Mathematical fluid dynamics: the interaction of nonlinear analysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988), 351–394.Google Scholar
- [Mj5]A. Majda, The interaction of nonlinear analysis and modern applied mathematics, Proc. International Congress Math. Kyoto, Springer-Verlag, New York, 1991.Google Scholar
- [MjO]A. Majda and S. Osher, Numerical viscosity and the entropy condition, CPAM 32(1979), 797–838.MathSciNetMATHGoogle Scholar
- [MjR]A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I, SIAM J. Appl. Math. 43(1983), 1310–1334;MathSciNetMATHCrossRefGoogle Scholar
- [MjR.a]A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. II, Studies inAppl. Math. 71(1984), 117–148.MathSciNetMATHGoogle Scholar
- [MjT]A. Majda and E. Thomann, Multi-dimensional shock fronts for second order waveequations, Comm. PDE 12(1988), 777–828.MathSciNetCrossRefGoogle Scholar
- [Men]R. Menikoff, Analogies between Riemann problems for 1-D fluid dynamics and 2-D steady supersonic flow, pp.225–240 in [Lind].Google Scholar
- [Meti]G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation en dimension deux d’espace, TAMS 296(1986), 431–479.MathSciNetMATHCrossRefGoogle Scholar
- [Met2]G. Metivier, Stability of multi-dimensional weak shocks, Comm. PDE 15(1990), 983–1028.MathSciNetMATHCrossRefGoogle Scholar
- [Mora]C. Morawetz, An alternative proof of DiPerna’s theorem, CPAM 45(1991), 1081–1090.MathSciNetGoogle Scholar
- [Nir]L. Nirenberg, An abstract form for the nonlinear Cauchy-Kowalevski theorem, J.Diff. Geom. 6(1972), 561–576.MathSciNetMATHGoogle Scholar
- [Nis]T. Nishida, Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44(1968), 642–646.MathSciNetMATHCrossRefGoogle Scholar
- [NS]T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, CPAM 26(1973), 183–200.MathSciNetMATHGoogle Scholar
- [OT]H. Ockendon and A. Tayler, Inviscid Fluid Flows, Appl. Math. Sci. #43, Springer-Verlag, New York, 1983.MATHGoogle Scholar
- [Oi1]O. Oleinik, Discontinuous solutions of non-linear differential equations, UspekhiMat. Nauk. 12(1957), 3–73.MathSciNetGoogle Scholar
- [Oi1.a]O. Oleinik, Discontinuous solutions of non-linear differential equations, AMS Transi. 26, 95–172.Google Scholar
- [O12]O. Oleinik, On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Uspekhi Mat. Nauk. 12(1957), 169–176.MathSciNetGoogle Scholar
- [Ovs]L. Ovsjannikov, A nonlinear Cauchy problem in a scale of Banach spaces, SovietMath.Dokl. 12(1971), 1497–1502.Google Scholar
- [PS]R. Pego and D. Serre, Instabilities in Glimm’s scheme for two systems of mixed type, SIAMJ. Numer. Anal 25(1988), 965–989.MathSciNetMATHCrossRefGoogle Scholar
- [Ra]J. Rauch, The u 5-Klein-Gordon equation, Pitman Res. Notes in Math. #53, pp. 335–364.Google Scholar
- [RR]J. Rauch and M. Reed, Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann. Math. 111(1980), 531–552.MathSciNetMATHCrossRefGoogle Scholar
- [Re]M. Reed, Abstract Non-Linear Wave Equations, LNM #507, Springer-Verlag, New York, 1976.MATHGoogle Scholar
- [RL]P. Resibois and M. DeLeener, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.Google Scholar
- [Rub]B. Rubino, On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws, Ann. Inst. H. Poincaré (Analyse non linéaire) 10(1993), 627–656.MathSciNetMATHGoogle Scholar
- [SSI]D. Schaeffer and M. Shearer, The classification of 2 x 2 systems of non-strictly hyperbolic conservation laws with application to oil recovery, CPAM 40(1987), 141–178.MathSciNetMATHGoogle Scholar
- [SS2]D. Schaeffer and M. Shearer, Riemann problems for nonstrictly hyperbolic 2×2 systems of conservation laws, TAMS 304(1987), 267–306.MathSciNetMATHGoogle Scholar
- [Seg]I. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91(1963), 129–135.MathSciNetMATHGoogle Scholar
- [Se]D. Serre, La compacité par compensation pour les systèmes hyperboliques non-linéaires de deux equations a une dimension d’espace, J. Math. Pures et Appl. 65(1986), 423–468.MATHGoogle Scholar
- [Sha]J. Shatah, Weak solutions and development of singularities of the SU(2) σ -model, CPAM 49(1988), 459–469.MathSciNetGoogle Scholar
- [Sh 1]M. Shearer, The Riemann problem for a class of conservation laws of mixed type, J. Diff. Eqs. 46(1982), 426–443.MathSciNetMATHCrossRefGoogle Scholar
- [Sh2]M. Shearer, Elementary wave solutions of the equations describing the motion of an elastic string, SIAMJ. Math. Anal. 16(1985), 447–459.MathSciNetMATHCrossRefGoogle Scholar
- [S1]M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat. Math. Anal. 81(1983), 301–315.MathSciNetMATHGoogle Scholar
- [Smi]R. Smith, The Riemann problem in gas dynamics, TAMS 249(1979), 1–50.MATHCrossRefGoogle Scholar
- [Smo]J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.MATHCrossRefGoogle Scholar
- [SJ]J. Smoller and J. Johnson, Global solutions for an extended class of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 32(1969), 169–189.MathSciNetMATHCrossRefGoogle Scholar
- [St]W. Strauss, Nonlinear Wave Equations, CBMS Reg. Conf. Ser. #73, AMS, Providence, R. I., 1989.MATHGoogle Scholar
- [Str]M. Struwe, Semilinear wave equations, Bull. AMS 26(1992), 53–85.MathSciNetMATHCrossRefGoogle Scholar
- [Tar1]L. Tartar, Compensated compactness and applications to PDE, pp. 136–212 in Research Notes in Mathematics, Nonlinear Analysis, and Mechanics, Heriot-Watt Symp. Vol. 4, ed. R. Knops, Pitman, Boston, 1979.Google Scholar
- [Tar2]L. Tartar, The compensated compactness method applied to systems of conservation laws, pp. 263–285 in [Ba].Google Scholar
- [Tay]M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.MATHCrossRefGoogle Scholar
- [Tern]B. Temple, Global solutions of the Cauchy problem for a class of 2 x 2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3(1982), 335–375.MathSciNetMATHCrossRefGoogle Scholar
- [Vol]A. Volpert, The spaces BV and quasilinear equations, Math. USSR Sb. 2(1967), 257–267.Google Scholar
- [Wen]B. Wendroff, The Riemann problem for materials with non-convex equations of state, I: Isentropic flow, J. Math. Anal. Appl. 38(1972), 454–466.MathSciNetMATHCrossRefGoogle Scholar
- [Wey]H. Weyl, Shock waves in arbitrary fluids, CPAM 2(1949), 103–122.MathSciNetMATHGoogle Scholar
- [Zar]E. Zarantoneilo (ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971.Google Scholar
Copyright information
© Springer Science+Business Media New York 1996