Nonlinear Hyperbolic Equations

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 117)

Abstract

Here we study nonlinear hyperbolic equations, with emphasis on quasi-linear systems arising from continuum mechanics, describing such physical phenomena as vibrating strings and membranes and the motion of a compressible fluid, such as air.

Keywords

Weak Solution Smooth Solution Hyperbolic System Rarefaction Wave Riemann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al]
    S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Birkhäuser, Boston, 1995.MATHCrossRefGoogle Scholar
  2. [AHPR]
    A. Anile, J. Hunter, P. Pantano, and G. Russo, Ray Methods for Nonlinear Waves in Fluids and Plasmas, Longman, New York, 1993.MATHGoogle Scholar
  3. [Ant]
    S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly 87(1980), 359–370.MathSciNetMATHCrossRefGoogle Scholar
  4. [Ba]
    J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.MATHGoogle Scholar
  5. [BKM]
    T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys. 94(1984), 61–66.MathSciNetMATHCrossRefGoogle Scholar
  6. [Bea]
    M. Beals, Propagation and Interaction of Singularities in Nonlinear HyperbolicProblems, Birkhäuser, 1989.MATHCrossRefGoogle Scholar
  7. [BB]
    M. Beals and M. Bezard, Low regularity solutions for field equations, Preprint, 1995.Google Scholar
  8. [BMR]
    M. Beals, R. Melrose, and J. Rauch (eds.), Microlocal Analysis and Nonlinear Waves, IMA Vols, in Math, and its Appl., Vol. 30, Springer-Verlag, New York, 1991.MATHGoogle Scholar
  9. [Bon]
    J. Bony, Calcul symbolique et propagation des singularities pour les équations aux dérivées nonlinéaires, Ann. Sci. Ecole Norm. Sup. 14(1981), 209–246.MathSciNetMATHGoogle Scholar
  10. [BW]
    P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Zeit. 176(1981), 87–121.MATHCrossRefGoogle Scholar
  11. [BCG3]
    R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differential Systems, MSRI Publ. #18, Springer-Verlag, New York, 1991.MATHCrossRefGoogle Scholar
  12. [Cafl]
    R. Caflisch, A simplified version of the abstract Cauchy-Kowalevski theorem with weak singularity, Bull. AMS 23(1990), 495–500.MathSciNetMATHCrossRefGoogle Scholar
  13. [CRS]
    C. Carasso, M. Rascle, and D. Serre, Etude d’un modèle hyperbolique en dynamique des cables, Math. Mod. Numer. Anal. 19(1985), 573–599.MathSciNetMATHGoogle Scholar
  14. [CIP]
    C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994.MATHGoogle Scholar
  15. [CBr]
    Y. Choquet-Bruhat, Theoreme d’existence pour certains systèmes d’équations aux derivées partielles non linéaires, Acta Math. 88(1952), 141–225.MathSciNetCrossRefGoogle Scholar
  16. [ChM]
    A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, 1979.MATHCrossRefGoogle Scholar
  17. [Chr]
    D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, CPAM 39(1986), 267–282.MathSciNetMATHGoogle Scholar
  18. [CCS]
    K. Chueh, C. Conley, and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math. J. 26(1977), 372–411.MathSciNetCrossRefGoogle Scholar
  19. [CS1]
    C. Conley and J. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, CPAM 24(1971), 459–472.MathSciNetMATHGoogle Scholar
  20. [CS2]
    C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, J. Math. Pures et Appl. 54(1975), 429–444.MathSciNetGoogle Scholar
  21. [CwS]
    E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasilinear first order equations in several space variables, CPAM 19(1966), 95–105.MathSciNetMATHGoogle Scholar
  22. [CF]
    R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Wiley, New York, 1948.MATHGoogle Scholar
  23. [Daf 1]
    C. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Rat. Mech. Anal. 52(1973), 1–9.MathSciNetMATHCrossRefGoogle Scholar
  24. [Daf2]
    C. Dafermos, Hyperbolic systems of conservation laws, pp. 25–70 in [Ba].Google Scholar
  25. [DD]
    C. Dafermos and R. DiPerna, The Riemann problem for certain classes of hyperbolic conservation laws, J. Diff. Eqs. 20(1976), 90–114.MathSciNetMATHCrossRefGoogle Scholar
  26. [DH]
    C. Dafermos and W. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Rat. Mech. Anal. 87(1985), 267–292.MathSciNetMATHCrossRefGoogle Scholar
  27. [Dio]
    P. Dionne, Sur les problèmes de Cauchy bien posés, J. Anal. Math. 10(1962–63), 1–90.MathSciNetMATHCrossRefGoogle Scholar
  28. [DiPl]
    R. DiPerna, Existence in the large for nonlinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52(1973), 244–257.MathSciNetMATHCrossRefGoogle Scholar
  29. [DiP2]
    R. DiPerna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 60(1975), 75–100.MathSciNetMATHCrossRefGoogle Scholar
  30. [DiP3]
    R. DiPerna, Uniqueness of solutions of conservation laws, Indiana Math. J. 28(1979), 244–257.MathSciNetCrossRefGoogle Scholar
  31. [DiP4]
    R. DiPerna, Convergence of approximate solutions to conservation laws, Arch.Rat. Mech. Anal. 82(1983), 27–70.MathSciNetMATHCrossRefGoogle Scholar
  32. [DiP5]
    R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91(1983), 1–30.MathSciNetMATHCrossRefGoogle Scholar
  33. [DiP6]
    R. DiPerna, Compensated compactness and general systems of conservation laws, Trans. AMS 292(1985), 383–420.MathSciNetCrossRefGoogle Scholar
  34. [Ev]
    L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. #74, AMS, Providence, R. I., 1990.MATHGoogle Scholar
  35. [FS]
    J. Fehribach and M. Shearer, Approximately periodic solutions of the elastic string equations, Appl. Anal. 32(1989), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  36. [Foy]
    R. Foy, Steady state solutions of hyperbolic systems of conservation laws with viscosity terms, CPAM 17(1964), 177–188.MathSciNetMATHGoogle Scholar
  37. [Frei]
    H. Freistühler, Dynamical stability and vanishing viscosity: a case study of aGoogle Scholar
  38. non-strictly hyperbolic system, CPAM 45(1992), 561–582.Google Scholar
  39. [Fdm]
    A. Friedman, A new proof and generalizations of the Cauchy-Kowalevski theorem, Trans. AMS 98(1961), 1–20.MATHCrossRefGoogle Scholar
  40. [FL1]
    K. Friedrichs and P. Lax, On symmetrizable differential operators, Proc. Symp.Pure Math. 10(1967) 128–137.MathSciNetGoogle Scholar
  41. [FL2]
    K. Friedrichs and P. Lax, Systems of conservation laws with a convex extension, Proc. Natl. Acad. Sci. USA 68(1971), 1686–1688.MathSciNetMATHCrossRefGoogle Scholar
  42. [Gbl]
    P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.MATHGoogle Scholar
  43. [Gb2]
    P. Garabedian, Stability of Cauchy’s problem in space for analytic systems of arbitrary type, J. Math. Mech. 9(1960), 905–914.MathSciNetMATHGoogle Scholar
  44. [Gel]
    I. Gel’fand, Some problems in the theory of quasilinear equations, Usp. Mat.Nauk 14(1959), 87–115; AMS Transi. 29(1963), 295–381.Google Scholar
  45. [Gil]
    J. Glimm, Solutions in the large for nonlinear systems of equations, CPAM 18(1965), 697–715.MathSciNetMATHGoogle Scholar
  46. [G12]
    J. Glimm, Nonlinear and stochastic phenomena: the grand challenge for partial differential equations, SIAM Review 33(1991), 626–643.MathSciNetMATHCrossRefGoogle Scholar
  47. [GL]
    J. Glimm and P. Lax, Decay of Solutions of Systems of Nonlinear HyperbolicConservation Laws, Memoirs AMS #101, Providence, R. I., 1970.Google Scholar
  48. [Gril]
    M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. of Math. 132(1990), 485–509.MathSciNetMATHCrossRefGoogle Scholar
  49. [Hof 1]
    D. Hoff, Invariant regions for systems of conservation laws, TAMS 289(1985), 591–610.MathSciNetMATHCrossRefGoogle Scholar
  50. [Hof2]
    D. Hoff, Global existence for ID compressible, isentropic Navier-Stokes equations with large initial data, TAMS 303(1987), 169–181.MathSciNetMATHGoogle Scholar
  51. [Hop]
    E. Hopf, The partial differential equation ut + uux — γuxx CPAM 3(1950), 201–230.MathSciNetMATHGoogle Scholar
  52. [H]
    L. Hörmander, Non-linear Hyperbolic Differential Equations. Lecture Notes, Lund Univ., 1986–87.Google Scholar
  53. [HKM]
    T. Hughes, T. Kato, and J. Marsden, Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rat. Mech. Anal. 63(1976), 273–294.MathSciNetGoogle Scholar
  54. [HM]
    T. Hughes and J. Marsden, A Short Course in Fluid Mechanics, Publish or Perish, Boston, 1976.MATHGoogle Scholar
  55. [JMR]
    J. Joly, G. Metivier, and J. Rauch, Non linear oscillations beyond caustics, Pre-publication 94–14, IRMAR, Rennes, France, 1994.Google Scholar
  56. [JRS]
    D. Joseph, M. Renardy, and J. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal 87(1985), 213–251.MathSciNetMATHCrossRefGoogle Scholar
  57. [K]
    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Springer LNM 448(1974), 25–70.Google Scholar
  58. [KK1]
    B. Keyfitz and H. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws, J. Diff. Eqs. 27(1978), 444–476.MathSciNetMATHCrossRefGoogle Scholar
  59. [KK2]
    B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal. 72(1980), 219–241.MathSciNetMATHCrossRefGoogle Scholar
  60. [KK3]
    B. Keyfitz and H. Kranzer (eds.), Nonstrictly Hyperbolic Conservation Laws, Contemp. Math #60, AMS, Providence, R. I., 1987.MATHGoogle Scholar
  61. [KS]
    B. Keyfitz and M. Shearer (eds.), Nonlinear Evolution Equations that ChangeType, IMA Vol. in Math, and its Appl., Springer-Verlag, New York, 1990.MATHGoogle Scholar
  62. [Kic]
    S. Kichenassamy, Nonlinear Wave Equations, Marcel Dekker, New York, 1995.Google Scholar
  63. [Kl]
    S. Klainerman, Global existence for nonlinear wave equations, CPAM 33(1980), 43–101.MathSciNetMATHGoogle Scholar
  64. [Kot]
    D. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, /. Math. Anal. Appl. 35(1971), 563–576.MathSciNetMATHCrossRefGoogle Scholar
  65. [LL]
    L. Landau and E. Lifshitz, Fluid Mechanics, Course ofTheoretical Physics, Vol. 6, Pergammon Press, New York, 1959.Google Scholar
  66. [L1]
    P. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, CPAM 7(1954), 159–193.MathSciNetMATHGoogle Scholar
  67. [L2]
    P. Lax, Hyperbolic systems of conservation laws II, CPAM 10(1957), 537–566.MathSciNetMATHGoogle Scholar
  68. [L3]
    P. Lax, The Theory of Hyperbolic Equations, Stanford Lecture Notes, 1963.Google Scholar
  69. [L4]
    P. Lax, Shock waves and entropy, pp. 603–634 in [Zar].Google Scholar
  70. [L5]
    P. Lax, The formation and decay of shock waves, Amer. Math. Monthly 79(1972), 227–241.MathSciNetMATHCrossRefGoogle Scholar
  71. [L6]
    P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Reg. Conf. Ser. Appl. Math. #11, SIAM, 1973.MATHCrossRefGoogle Scholar
  72. [Lind]
    W. Lindquist (ed.), Current Progress in Hyperbolic Systems: Riemann Problemsand Computations, Contemp. Math., Vol. 100, AMS, Providence, R. I., 1989.MATHGoogle Scholar
  73. [Liu1]
    T.-P. Liu, The Riemann problem for general 2×2 conservation laws, Trans. AMS 199(1974), 89–112.MATHGoogle Scholar
  74. [Liu2]
    T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff.Eqs. 18(1975), 218–234.MATHCrossRefGoogle Scholar
  75. [Liu3]
    T.-P. Liu, Uniqueness of weak solutions of the Cauchy problem for general 2×2 conservation laws, J. Diff Eqs. 20(1976), 369–388.MATHCrossRefGoogle Scholar
  76. [Liu4]
    T.-P. Liu, Solutions in the large for the equations of non-isentropic gas dynamics, Indiana Math. J. 26(1977), 147–177.MATHCrossRefGoogle Scholar
  77. [Liu5]
    T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57(1977), 135–148.MathSciNetMATHCrossRefGoogle Scholar
  78. [Liu6]
    T.-P. Liu, Nonlinear Stability of Shock Waves for Viscous Conservation Laws, Memoirs AMS #328, Providence, R. I., 1985.Google Scholar
  79. [LS]
    T.-P. Liu and J. Smoller, The vacuum state in isentropic gas dynamics, Adv. Appl.Math. 1(1980), 345–359.MathSciNetMATHCrossRefGoogle Scholar
  80. [Mj]
    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in SeveralSpace Variables, Appl. Math. Sci. #53, Springer-Verlag, 1984.MATHCrossRefGoogle Scholar
  81. [Mj2]
    A. Majda, The Stability of Multi-dimensional Shock Fronts. Memoirs AMS, #275, Providence, R. I., 1983.Google Scholar
  82. [Mj3]
    A. Majda, The Existence of Multi-dimensional Shock Fronts. Memoirs AMS, #281, Providence, R. I., 1983.Google Scholar
  83. [Mj4]
    A. Majda, Mathematical fluid dynamics: the interaction of nonlinear analysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988), 351–394.Google Scholar
  84. [Mj5]
    A. Majda, The interaction of nonlinear analysis and modern applied mathematics, Proc. International Congress Math. Kyoto, Springer-Verlag, New York, 1991.Google Scholar
  85. [MjO]
    A. Majda and S. Osher, Numerical viscosity and the entropy condition, CPAM 32(1979), 797–838.MathSciNetMATHGoogle Scholar
  86. [MjR]
    A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I, SIAM J. Appl. Math. 43(1983), 1310–1334;MathSciNetMATHCrossRefGoogle Scholar
  87. [MjR.a]
    A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. II, Studies inAppl. Math. 71(1984), 117–148.MathSciNetMATHGoogle Scholar
  88. [MjT]
    A. Majda and E. Thomann, Multi-dimensional shock fronts for second order waveequations, Comm. PDE 12(1988), 777–828.MathSciNetCrossRefGoogle Scholar
  89. [Men]
    R. Menikoff, Analogies between Riemann problems for 1-D fluid dynamics and 2-D steady supersonic flow, pp.225–240 in [Lind].Google Scholar
  90. [Meti]
    G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation en dimension deux d’espace, TAMS 296(1986), 431–479.MathSciNetMATHCrossRefGoogle Scholar
  91. [Met2]
    G. Metivier, Stability of multi-dimensional weak shocks, Comm. PDE 15(1990), 983–1028.MathSciNetMATHCrossRefGoogle Scholar
  92. [Mora]
    C. Morawetz, An alternative proof of DiPerna’s theorem, CPAM 45(1991), 1081–1090.MathSciNetGoogle Scholar
  93. [Nir]
    L. Nirenberg, An abstract form for the nonlinear Cauchy-Kowalevski theorem, J.Diff. Geom. 6(1972), 561–576.MathSciNetMATHGoogle Scholar
  94. [Nis]
    T. Nishida, Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44(1968), 642–646.MathSciNetMATHCrossRefGoogle Scholar
  95. [NS]
    T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, CPAM 26(1973), 183–200.MathSciNetMATHGoogle Scholar
  96. [OT]
    H. Ockendon and A. Tayler, Inviscid Fluid Flows, Appl. Math. Sci. #43, Springer-Verlag, New York, 1983.MATHGoogle Scholar
  97. [Oi1]
    O. Oleinik, Discontinuous solutions of non-linear differential equations, UspekhiMat. Nauk. 12(1957), 3–73.MathSciNetGoogle Scholar
  98. [Oi1.a]
    O. Oleinik, Discontinuous solutions of non-linear differential equations, AMS Transi. 26, 95–172.Google Scholar
  99. [O12]
    O. Oleinik, On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Uspekhi Mat. Nauk. 12(1957), 169–176.MathSciNetGoogle Scholar
  100. [Ovs]
    L. Ovsjannikov, A nonlinear Cauchy problem in a scale of Banach spaces, SovietMath.Dokl. 12(1971), 1497–1502.Google Scholar
  101. [PS]
    R. Pego and D. Serre, Instabilities in Glimm’s scheme for two systems of mixed type, SIAMJ. Numer. Anal 25(1988), 965–989.MathSciNetMATHCrossRefGoogle Scholar
  102. [Ra]
    J. Rauch, The u 5-Klein-Gordon equation, Pitman Res. Notes in Math. #53, pp. 335–364.Google Scholar
  103. [RR]
    J. Rauch and M. Reed, Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann. Math. 111(1980), 531–552.MathSciNetMATHCrossRefGoogle Scholar
  104. [Re]
    M. Reed, Abstract Non-Linear Wave Equations, LNM #507, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  105. [RL]
    P. Resibois and M. DeLeener, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.Google Scholar
  106. [Rub]
    B. Rubino, On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws, Ann. Inst. H. Poincaré (Analyse non linéaire) 10(1993), 627–656.MathSciNetMATHGoogle Scholar
  107. [SSI]
    D. Schaeffer and M. Shearer, The classification of 2 x 2 systems of non-strictly hyperbolic conservation laws with application to oil recovery, CPAM 40(1987), 141–178.MathSciNetMATHGoogle Scholar
  108. [SS2]
    D. Schaeffer and M. Shearer, Riemann problems for nonstrictly hyperbolic 2×2 systems of conservation laws, TAMS 304(1987), 267–306.MathSciNetMATHGoogle Scholar
  109. [Seg]
    I. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91(1963), 129–135.MathSciNetMATHGoogle Scholar
  110. [Se]
    D. Serre, La compacité par compensation pour les systèmes hyperboliques non-linéaires de deux equations a une dimension d’espace, J. Math. Pures et Appl. 65(1986), 423–468.MATHGoogle Scholar
  111. [Sha]
    J. Shatah, Weak solutions and development of singularities of the SU(2) σ -model, CPAM 49(1988), 459–469.MathSciNetGoogle Scholar
  112. [Sh 1]
    M. Shearer, The Riemann problem for a class of conservation laws of mixed type, J. Diff. Eqs. 46(1982), 426–443.MathSciNetMATHCrossRefGoogle Scholar
  113. [Sh2]
    M. Shearer, Elementary wave solutions of the equations describing the motion of an elastic string, SIAMJ. Math. Anal. 16(1985), 447–459.MathSciNetMATHCrossRefGoogle Scholar
  114. [S1]
    M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat. Math. Anal. 81(1983), 301–315.MathSciNetMATHGoogle Scholar
  115. [Smi]
    R. Smith, The Riemann problem in gas dynamics, TAMS 249(1979), 1–50.MATHCrossRefGoogle Scholar
  116. [Smo]
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.MATHCrossRefGoogle Scholar
  117. [SJ]
    J. Smoller and J. Johnson, Global solutions for an extended class of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 32(1969), 169–189.MathSciNetMATHCrossRefGoogle Scholar
  118. [St]
    W. Strauss, Nonlinear Wave Equations, CBMS Reg. Conf. Ser. #73, AMS, Providence, R. I., 1989.MATHGoogle Scholar
  119. [Str]
    M. Struwe, Semilinear wave equations, Bull. AMS 26(1992), 53–85.MathSciNetMATHCrossRefGoogle Scholar
  120. [Tar1]
    L. Tartar, Compensated compactness and applications to PDE, pp. 136–212 in Research Notes in Mathematics, Nonlinear Analysis, and Mechanics, Heriot-Watt Symp. Vol. 4, ed. R. Knops, Pitman, Boston, 1979.Google Scholar
  121. [Tar2]
    L. Tartar, The compensated compactness method applied to systems of conservation laws, pp. 263–285 in [Ba].Google Scholar
  122. [Tay]
    M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.MATHCrossRefGoogle Scholar
  123. [Tern]
    B. Temple, Global solutions of the Cauchy problem for a class of 2 x 2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3(1982), 335–375.MathSciNetMATHCrossRefGoogle Scholar
  124. [Vol]
    A. Volpert, The spaces BV and quasilinear equations, Math. USSR Sb. 2(1967), 257–267.Google Scholar
  125. [Wen]
    B. Wendroff, The Riemann problem for materials with non-convex equations of state, I: Isentropic flow, J. Math. Anal. Appl. 38(1972), 454–466.MathSciNetMATHCrossRefGoogle Scholar
  126. [Wey]
    H. Weyl, Shock waves in arbitrary fluids, CPAM 2(1949), 103–122.MathSciNetMATHGoogle Scholar
  127. [Zar]
    E. Zarantoneilo (ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Michael E. Taylor
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations