Passive Components (II)

  • Ching-Fuh Lin

Abstract

With an understanding of the basic passive components provided by previous chapters, we can now study the more complex passive components. They are often formed from the basic passive components. Those complex passive components are sometimes composed of several simple components, but can also be fabricated using monolithic integration methods. Multiple schemes can also be used to fabricate each type of those components to achieve a similar function. Once again, we will highlight the principles applied and basic components used to form the complex components as well as how the functions are achieved as we go through this chapter.

Keywords

Fiber Bragg Grating Wavelength Division Multiplex Semiconductor Optical Amplifier Wavelength Conversion Passive Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keiser, G., Optical Fiber Communications. 2/ed, McGraw-Hill, 1991.Google Scholar
  2. 2.
    Fujii, Y., Minowa, J., and Tanada, H., Practical two-wavelength multiplexer and demultiplexer: design and performance. Applied Opitcs 1983; 22: 3090 — 3097.Google Scholar
  3. 3.
    Senior, J. M., Optical Fiber Communication-Principles and Practice. 2/ed, Prentice Hall, 1992.Google Scholar
  4. 4.
    Kashima, Norio, Passive Optical Components for Optical Fiber Transmission. Artech House, 1995.Google Scholar
  5. 5.
    Digonett, M and Shaw, H. J., Wavelength multiplexing in single-mode fiber couplers. Applied Optics 1983; 22: 484–491.ADSCrossRefGoogle Scholar
  6. 6.
    Smit, M.K. and Dam, C. van, PHASAR-based WDM devices: principles, design, and applications. IEEE Journal of Selected Topics on Quantum Electronics 1996; 2: 236–250.CrossRefGoogle Scholar
  7. 7.
    Ishida,O., Takahashi, H., Suzuki, S., and Inoue, Y., Multichannel frequency-selective switching employing an arrayed-waveguide grating multiplexer with fold-back optical paths, IEEE Photonics Technology Letters. 1994; 6: 1219–1221.ADSCrossRefGoogle Scholar
  8. 8.
    Hida, Y., Inoue, Y., and Imamura, S., Polymeric arrayed-waveguide grating multiplexeroperating around 1.3 µm. Electronics Letters 1994; 30: 959–960.CrossRefGoogle Scholar
  9. 9.
    Smit, M. K., Koonen, T., Herrmann, H., and Sohler, W., “Wavelength-Selective Devices.” In Fiber Optic Communication Devices. Grote, N. and Venghaus, V., eds. Springer, 2001.Google Scholar
  10. l0.Ramaswami, R. and Sivarajan, Optical Networks: A Practical Perspective. Morgan Kaufman, 1998.Google Scholar
  11. 11.
    Lin, L. Y., Goldstein, E. L., Simmons, J. M., Tkach, R. W., High-density connection-symmetric free-space micromachined polygon optical cross-connects with low loss for WDM networks. Proc. OFC’98, PD24–1, San Jose, 1998.Google Scholar
  12. 12.
    Giles, R., Aksyuk, V., Bolle, C., Pardo, F., and Bishoh. D. J., “Silicon Micromachines inOptical Communications Networks: Tiny Machines for Large Systems.” In MEMS and MOEMS Technology and Applications. Rai-Choudhury, P., ed. SPIE Press, 2000.Google Scholar
  13. 13.
    Su, G.-D. J., Jiang, F., Chiu, E., Avakian, A., Dickson, J., Jia, D., and Tsao, T., Design, test and qualification of stiction-free MEMS optical switches. CLEO/Pacific Rim 2003, Taipei, Taiwan.Google Scholar
  14. 14.
    Agilent Photonic Swiching Platform: N3565A 32 x 32 photonic switch, technical specifications, http://www.agilent.com/Google Scholar
  15. 15.
    Noguchi, K., Optical multichannel switch composed of liquid-crystal light-modulator arrays and bi-refringent crystals. Electronnics Letters 1997; 33: 1627–1629.CrossRefGoogle Scholar
  16. 16.
    Crossland, W. A., Manolis, I. G., Redmond, M. M., Tan, K. L., Wilkinson, T. D., Holmes, M. J., Parker, T. R., Chu, H. H., Croucher, J., Handerek, V. A., Warr, S. T., Robertson, B., Bonas, I. G., Franklin, R., Stace, C., White, H. J., Woolley, R. A., and Henshall, G., Holographic optical switching: the `ROSES’ demonstrator. Journal of Lightwave Technology 2000; 18: 1845–1854.ADSCrossRefGoogle Scholar
  17. 17.
    Shibata, T., Okuno, M., Goh, T., Yasu, M., Itoh, M., Ishii, M., Hibino, Y., Sugita, A., and Himeno, A., Silica-based 16 x 16 optical matrix switch module with integrated driving circuits, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001; postdeadline paper, 3: WR1–1 -WR1–3.Google Scholar
  18. 18.
    Rabbering, F. L. W., van Nunen, J. F. P., and Eldada, L., Polymeric 16 x 16 digital optical switch matrix. ECOC 2001; Postdeadline paper, 6: 78–79.Google Scholar
  19. Borella, M., S., Jue, J. P., Banerjee, D., Ramamurthym, B., and Mukherjee, B., Optical components for WDM lightwave networks. Proceedings of IEEE 1997; 85: 1274–1307.CrossRefGoogle Scholar
  20. 20.
    Al-Salamesh, D. Y., Korotky, S. K., Levy, D. S., Murphy, T. O., Patel, S. H., Richards, G. W., and Tentarelli, E. S., “Optical Switching in Transport Networks: Applications, Requirements, Architectures, Technologies, and Solutions.” In Optical Fiber Telecommunications IVA: Components. Kaminow, I. and Li, T., eds. Academic Press 2002.Google Scholar
  21. 21.
    Franz J. H. and Jain V. K., Optical Communications: Components and Systems. Alpha Science International Ltd., 2000.Google Scholar
  22. 22.
    Hinton, H. S., Photonic switching fabrics. IEEE Communication Magazine 1990; 28: 71–89.CrossRefGoogle Scholar
  23. 23.
    Siegman, A. E., Lasers. University Press, 1986.Google Scholar
  24. 24.
    Lin, C. F. and Ku, P. C., Analysis of stability in two-mode laser systems. IEEE J. Quantum Electron. 1996; 32: 1377–1382.ADSCrossRefGoogle Scholar
  25. 25.
    Joergenson, C., Durhuus, T., Braagaard, C., Mikkelsen, B., and Stubkjaer, K. E., 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers. IEEE Photonics Technology Letters 1993; 5: 657–660.ADSCrossRefGoogle Scholar
  26. 26.
    Joergenson, C., Danielsen, S. L., Vaa, M., Mikkelsen, B., Stubkjaer, K. E., Doussiere, P, Pommerau, L. Goldstein, and Goix, M., 40 Gbit/s all-optical wavelength conversion by semiconductor optical amplifiers. Electronics Letters 1996; 32: 367–368.CrossRefGoogle Scholar
  27. 27.
    Janz, C., Dagens, B., Bisson, A., Poingt, F., Pommereau, F., Gaborit, F., Guillemot, I., and Renaud, M., Integrated all-active Mach-Zehnder wavelength converter with —10 dBm signal sensitivity and 15 dB dynamic range at 10 Gbit/s. Electronics Letters 1999; 35: 588590.Google Scholar
  28. 28.
    Leuthold, J., Joyner, C. H., Mikkelson, B., Raybon, G., Pleumeekers, J. L., Miller, B. I., Dreyer, K., and Burrus, C. A., 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electronics Letters 2000; 36: 1129 1130.Google Scholar
  29. 29.
    Agrawal G. P., Nonlinear Fiber Optics. 2/ed. Academic Press, 1995.Google Scholar
  30. 30.
    Zhou, J., Park, N., Vahala, K. J., Newkirk, M. A., and Miller, M. I., Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift. IEEE Photonics Technology Letters 1994; 6: 984–987.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ching-Fuh Lin
    • 1
  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations