Composition and Biomass of Phytoplankton

  • Robert G. Wetzel
  • Gene E. Likens

Abstract

The structure of photosynthetic populations in aquatic ecosystems is dynamic and constantly changing in species composition and biomass distribution. An understanding of community structure is dependent on an ability to differentiate between true population changes and variations in spatial and temporal distribution. Changes in species composition and biomass may affect photosynthetic rates, assimilation efficiencies, rates of nutrient utilization, grazing rates, and so on.

Keywords

Particulate Organic Carbon Algal Species Glass Fiber Filter Sedimentation Chamber Particulate Detritus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association. 1989. Standard Methods for the Examination of Water and Wastewater. 17th Ed. American Public Health Association, Washington, DC. 1550 pp.Google Scholar
  2. Bellinger, E.G. 1974. A note on the use of algal sizes in estimates of population standing crops. Brit. Phycol. J. 9: 157–161.Google Scholar
  3. Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Progr. Ser. 36:171–176.Google Scholar
  4. Brock, T.D. 1983. Membrane Filtration: A User’s Guide and Reference Manual. Science Tech. Inc. Madison. 381 pp.Google Scholar
  5. Clark, W.J. and W.F. Sigler. 1963. Method of concentrating phytoplankton samples using membrane filters. Limnol. Oceanogr. 8:127–129.Google Scholar
  6. Coulon, C. and V. Alexander. 1972. A sliding-chamber phytoplankton settling technique for making permanent quantitative slides with applications in fluorescent microscopy and autoradiography. Limnol. Oceanogr. 17:149–152.Google Scholar
  7. Crumpton, W.G. and R.G. Wetzel. 1981. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol. Oceanogr. 26: 976–980.Google Scholar
  8. deNoyelles, F., Jr. 1968. A stained-organism filter technique for concentrating phytoplankton. Limnol. Oceanogr. 13: 562–565.Google Scholar
  9. Dodson, A.N. and W.H. Thomas. 1964. Concentration of plankton in a gentle fashion. Limnol. Oceanogr. 9: 455–456.Google Scholar
  10. Golterman, H.L. and R.S. Clymo (eds). 1969. Methods for Chemical Analysis of Fresh Waters. IBP Handbook No. 8. Blackwell, Oxford. 172 pp.Google Scholar
  11. Holmes, R.W. 1962. The preparation of marine phytoplankton for microscopic examination and enumeration on molecular filters. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 433. 6 pp.Google Scholar
  12. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes, and J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. J. Conseil Perm. Int. Explor. Mer 30:3–15.Google Scholar
  13. Jackson, H.W. and L.G. Williams. 1962. Calibration and use of certain plankton counting equipment. Trans. Amer. Microsc. Soc. 81:96–103.Google Scholar
  14. Jacobsen, T.R. 1982. Comparison of chlorophyll a measurements by fluorometric, spectrophotometric and high pressure liquid chromatographic methods in aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16: 35–45.Google Scholar
  15. Javornickÿ, P. 1958. Revise nékterÿch metod pro zjigiovâni kvantity fytoplanktonu. (The revision of some quantitative methods for phytoplankton research.) (In Czech, with English summary.) Sci. Pap. Inst. Chem. Technol. Prague, Fac. Technol. Fuel and Water 2 (Part 1): 283–367.Google Scholar
  16. Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c i and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191–194.Google Scholar
  17. Kellar, P.E., S.A. Paulson, and L.J. Paulson. 1980. Methods for biological, chemical and physical analyses in reservoirs. Tech. Rep. 5, Lake Mead Limnological Res. Center, Univ. Nevada, Las Vegas. 234 pp.Google Scholar
  18. Lium, B.W. and W.T. Shoaf. 1978. The use of magnesium carbonate in chlorophyll determinations. Wat. Resources Bull. 14:190–194.Google Scholar
  19. Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  20. Lund, J.W.G. 1951. A sedimentation technique for counting algae and other organisms. Hydrobiologia 3: 390–394.CrossRefGoogle Scholar
  21. Lund, J.W.G., C. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170.Google Scholar
  22. Marker, A.F.H. and S. Jinks. 1982. The spectrophotometric analysis of chlorophyll a and phaeopigments in acetone, ethanol and methanol. Arch. Hydrobiol. Beih. Ergebn. Limnol. 16: 3–17.Google Scholar
  23. Marker, A.F.H., C.A. Crowther, and R.J.M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 52–69.Google Scholar
  24. McAlice, B.J. 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnol. Oceanogr. 16: 19–28.Google Scholar
  25. McNabb, C.D. 1960. Enumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol. Oceanogr. 5:57–61.Google Scholar
  26. Moore, J.K. 1963. Refinement of a method for filtering and preserving marine phytoplankton on a membrane filter. Limnol. Oceanogr. 8: 304–305.Google Scholar
  27. Mullin, M.M., P.R. Sloan, and R.W. Eppley. 1966. Relationship between carbon content, cell volume, and area in phytoplankton. Limnol. Oceanogr. 11:307–311.Google Scholar
  28. Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14:14–36.Google Scholar
  29. Palmer, C.M. and T.E. Maloney. 1954. A new counting slide for nannoplankton. Spec. Publ. Amer. Soc. Limnol. Oceanogr. 21. 6 pp.Google Scholar
  30. Redalje, D.G. and E.A. Laws. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62: 73–79.Google Scholar
  31. Riemann, B. 1980. A note on the use of methanol as an extraction solvent for chlorophyll a determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 70–78.Google Scholar
  32. Reimann, B. 1982. Measurement of chlorophyll a and its degradation products: A comparison of methods. Arch. Hydrobiol. Beih. Ergebn. Limnol. /6: 19–24.Google Scholar
  33. Schanz, F. and H. Rai. 1988. Extract preparation and comparison of fluorometric, chromatographic (HPLC) and spectrophotometric determinations of chlorophyll-a. Arch. Hydrobiol. 112: 533–539.Google Scholar
  34. Schröder, R. 1969. Ein summierender Wasserschöpfer. Arch. Hydrobiol. 66: 241–243.Google Scholar
  35. Sicko-Goad, L., E.F. Stoermer, and B.G. Ladewski. 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93: 147–163.CrossRefGoogle Scholar
  36. Stainton, M.P., M.J. Capel, and F.A.J. Armstrong. 1977. The Chemical Analysis of Fresh Water. 2nd Ed. Misc. Spec. Publ. Fish. Environ. Canada 25. 180 pp.Google Scholar
  37. Sterman, N.T. 1988. Spectrophotometric and fluorometric chlorophyll analysis. pp. 35–45. In: C.S. Lobban, D.J. Chapman, and B.P. Kremer, Editors. Experimental Phycology: A Laboratory Manual. Cambridge Univ. Press, Cambridge.Google Scholar
  38. Straskraba, M. and P. Javornickÿ. 1973. Limnology of two re-regulation reservoirs in Czechoslovakia. Hydrobiol. Studies 2: 249–316.Google Scholar
  39. Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.Google Scholar
  40. Strickland, J.D.H. and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 2nd Ed. Fisheries Research Board of Canada, Ottawa. 310 pp.Google Scholar
  41. Tyler, P.A. 1971. A simple and rapid technique for surveying size and shape variation in desmids and diatoms. Brit. Phycol. J. 6: 231–233.Google Scholar
  42. Utermöhl, H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh. Int. Ver. Limnol. 5: 567–595.Google Scholar
  43. Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 9. 38 pp.Google Scholar
  44. Wetzel, R.G. 1983. Limnology, 2nd Ed. Saunders Coll., Philadelphia. 860 pp.Google Scholar
  45. Whipple, G.C. 1927. The Microscopy of Drinking Water. 4th Ed. Wiley and Sons, New York. 586 pp.Google Scholar
  46. Yentsch, C.S. and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert G. Wetzel
    • 1
  • Gene E. Likens
    • 2
  1. 1.Department of Biology, College of Arts and SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Institute of Ecosystem StudiesThe New York Botanical Garden, Cary ArboretumMillbrookUSA

Personalised recommendations