Temporal and Spatial Variability in Non-Point Source Phosphorus in Relation to Agricultural Production and Terrestrial Indicators: The Beaver Brook Case Study, Pike River Basin, Québec

  • Aubert R. Michaud
  • Richard Lauzier
  • Marc R. Laverdière
Conference paper

Abstract

The phosphorus (P) transfer system within the Beaver Brook watershed, a small agricultural watershed (11 km2) tributary to the Pike River, was described through outlet monitoring and spatially discrete sampling of upstream subwatersheds. Spatial variability of P exports was related to the type of agricultural production system and to the attributes of the landscape. Over the three years of study, mean annual exports of dissolved reactive soluble (DRP), bioavailable (BioP) and total phosphorus (TP) from the watershed were 0.57, 0.93 and 1.54 kg-P ha−1, respectively. These export loads were temporally episodic in nature: 75% of total P exports occurred within 6% of the monitoring period. These episodes occurred during peak streamflow events and under late-winter/early-spring conditions when overland runoff was generated through snowmelt or precipitation on thawing or saturated soils. Under base flow conditions, the flux-stream discharge relationship indicated that TP point sources contributed about 5% of annual exports. During elevated streamflow conditions, high bioavailability and particulate ratio of P exports indicated in-stream P storage and transformation mechanisms, as well as a significant contribution of subsurface P transport to the main stream channel. The majority of spatial P concentration patterns could be explained on the basis of the runoff curve number, and the localisation of the subwatershed within the landscape. Under comparable levels of hydrological activity, significant differences in subwatershed water quality were explained by typical agronomic (source) indicators, namely P budget. The implications for farm and land management are that for a tangible reduction in P exports to occur, the importance of considering both runoff and nutrient management must be stressed.

Keywords

Total Phosphorus Total Phosphorus Concentration Revise Universal Soil Loss Equation Saturation Ratio Subsurface Drainage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, B. and R.P. Richards. 2002. Phosphorus budgets and riverine phosphorus export in northwestern Ohio watersheds. J. Environ. Qual. 31: 96–108.CrossRefGoogle Scholar
  2. Beauchemin, S., R.R. Simard et D. Cluis. 1998. Forms and concentration of phosphorus in drainage water of twenty-seven tile-drained soils. J. Environ. Qual. 27: 721–728.CrossRefGoogle Scholar
  3. Beaudet, P. 2002. La fertilisation et la gestion du risque agroenvironnemental. In Ordre des agronomes du Québec (ed. Cd-rom) Colloque sur le phosphore: une gestion éclairée. 20 p.Google Scholar
  4. Bevin, K. and E.F. Wood. 1983. Subwatershed geomorphology and the dynamics of runoff contributing areas. J. Hydrol., 65: 139–158.CrossRefGoogle Scholar
  5. Bolinder, M.A., Simard, R.R., Beauchemin, S., and K.B. MacDonald. 1998. Indicator of risk of water contamination: methodology for the phosphorus component. Agriculture et agro-alimentaire Canada. Rapport interne Na 24, 30p.Google Scholar
  6. Brunelle A. and V. Savoie. 2000. Guide des pratiques de conservation en grandes cultures. Module 7-B: Diagnostic et correction des problèmes de drainage. Conseil des productions végétales du Québec. 32 p.Google Scholar
  7. Budd, L.F. and D.W. Meals. 1994. Lake Champlain non-point source pollution assessment. Lake Champlain basin program Technical Report 6A and 6B. Grand Isle, Vermont.Google Scholar
  8. Cann, D.B., P. Lajoie and P.C. Stobbe. 1948. Soil survey of Shefford, Brome and Missisquoi counties in the province of Quebec. King’s printer, Ottawa, Ont.Google Scholar
  9. Caumartin, J. and R. Vincent. 1994. Diagnostic environnemental de la Rivière-aux-Brochets. Ministère de l’environnement et de la faune du Québec. Québec, Qc.Google Scholar
  10. Centre d’expertises hydriques du Québec. 2000. Logiciel de traitement de données hydrométriques BDH, version 1. 0. Québec, Qc.Google Scholar
  11. Côté, D. 2002. When Optimized Manure Management Leads to Fertile Soil, Healthy Air and Pure Water. Lake Champlain Research Consortium, Symposium 2002: Lake Champlain in the new millennium. Saint-Jeansur-Richelieu, Québec.Google Scholar
  12. Deslandes, J., A.R. Michaud, and F. Bonn. 2003. Use of GIS and remote sensing to develop indicators of phosphorus non-point source pollution in the Pike river basin. In: T. Manley and P. Manley, ed., Lake Champlain in the new millennium. Kluwer academic/plenum pub. New York NY.Google Scholar
  13. Dorioz, J.M., E.A. Cassell, A. Orand and K.G. Eisenman. 1998. Phosphorus storage, transport and export dynamics in the Foron river watershed. Hydr. Process. 12 (2): 285–309.CrossRefGoogle Scholar
  14. Dorioz, J.M., E. Pilleboue and A. Ferhi. 1989. Dynamique du phosphore dans les bassins versants: importance des phénomènes de retention dans les sediments. Water Res., 23(2), 147–158.CrossRefGoogle Scholar
  15. Dorioz, J.M. and A. Ferhi. 1993. Non-point pollution and management of agricultural areas: phosphorus and nitrogen transfer in an agricultural watershed. Wat. Res. 28(2): 395–410.CrossRefGoogle Scholar
  16. Dorioz, J-M. and P. Blanc. 2001. Maîtrise de la charge externe en phosphore des plans d’eau et fonctionnement des basins versants. In: L’eau dans l’espace coral, vie et milieu aquatiques. INRA editions, 113–132.Google Scholar
  17. Gangbazo, G. 1991. Effets des évènements hydrologiques sur la perte d’azote et de phosphore suite à l’épandage de lisier de porc. PhD Thesis, Institut National de la Recherche Scintifique (INRS-EAU). 324 p.Google Scholar
  18. Gangbazo, G. et F. Babin. 2000. Pollution de l’eau des rivières dans les bassins versants agricoles. Vecteur environnement. 33–4: 47–57.Google Scholar
  19. Gangbazo, G., D. Cluis and E. Buon. 2002. Suspended sediments and phosphorus transport in an agricultural watershed. Vecteur Environnement 35: 44–53.Google Scholar
  20. Gburek, W.J., A.N. Sharpley, L. Heathwaite and G.J. Folmar. 2000a. Phosphorus management at watershed scale: a modification of the phosphorus index. J. Env. QuaL 29: 130–144.CrossRefGoogle Scholar
  21. Gburek, W.J., A.N. Sharpley and GJ. Folmar. 2000b. Critical areas of phosphorus export from agricultural watersheds, In A.N. Sharpley, Ed., Agriculture and phosphorus management: the Chesapeake bay, Lewis Publishers, Boca Raton, Florida.Google Scholar
  22. Giroux, M., and T.S. Tran. 1996. Critères agronomiques et environnementaux liés à la disponibilité, la solubilité et la saturation en phosphore des sols agricoles du Québec. Agrosol 9 (2): 51–57.Google Scholar
  23. Giroux, M., D. Carrier and P. Beaudet. 1996. Problématique et méthode de gestion des charges de phosphore appliquées aux sols agricoles en provenance des engrais de ferme. Agrosol 9 (1): 36–45.Google Scholar
  24. Giroux, M. and P. Enright. 2002. Concentrations et charges d’azote et de phosphore perdues dans les drains souterrains selon les cultures et les modes de fertilisation. Site de Saint-Lambert-de-Lauzon. Cahiers de l’observatoire de la qualité des sols du Québec, Institut de recherche et de développement en agroenvironnement Inc.Google Scholar
  25. Grabow, G.L., J. Spooner, L.A. Lombardo, and D.E. Lione. 1999. Detecting water quality changes before and after BMP implementation: Use of SAS for statistical analyses. NEQEP Notes, Na 93, North Carolina State Water Quality Group Newsletter, NCSU, Raleigh, NC.Google Scholar
  26. Grando, S. 1996. Effets de deux modes d’épandage de lisier de porc sur la qualité de l’eau de ruissellement. Mémoire de fin d’études, ENITA de Bordeaux. 64 p.Google Scholar
  27. Greenberg, E.A., L.S. Clesceri and A.D. Eaton. 1992a. Total Suspended Solids Dried at 103–105 °C. Standard method for examination of waste and waster water, 18th edition, pp 2–56.Google Scholar
  28. Greenberg, E.A., L.S. Clesceri and A.D. Eaton. 1992b. Persulfate Digestion Method. Standard method for examination of waste and waster water, 18th edition, pp 4–112.Google Scholar
  29. Grenon, L., J,-M. Cossette, M. Deschênes and L. Lamontagne. 1999. Etude pédologique du comté de Rouville, Québec. Agriculture et Agroalimentaire Canada, Direction générale de la recherche, Centre de recherche et de développement sur les sols et les grands cultures. 264 pages.Google Scholar
  30. Haygarth, P.M. and S.C. Jarvis. 1999. Transfer of phosphorus from agricultural soils. Adv. Agron. 66: 195–249.Google Scholar
  31. Hamilton, P.A. and T.L. Miller. 2002. Lessons from the National Water-Quality Assesment. J. Soil Water Conserv. 57:164-A-24A.Google Scholar
  32. Hegman, W., D. Wang et X.C. Borer. 1999. Estimation of Lake Champlain basin wide non-point source phosphorus export. Technical report Na. 31. Lake Champlain Basin Program publication series.Google Scholar
  33. Hydrologic, 2003. Levelmeter an recorder LPN 8. Hydrologic Co. Saint-Martin d’Heres, France.Google Scholar
  34. Jamieson, A., C. Madramootoo and P. Enright. 2002. Evaluating Phosphorus Losses in surface and subsurface runoff from two agricultural fields in Quebec: Lake Champlain Research Consortium, Symposium 2002: Lake Champlain in the new millennium. Saint-Jean-sur-Richelieu, Québec.Google Scholar
  35. Kleinman, P.J.A., R.B. Bryant, W.S. Reid, A.N. Sharpley, and D. Pimentel. 2000. Using phosphorus behavior to identify environmental thresholds. Soil Science 165: 943–950.CrossRefGoogle Scholar
  36. Laflamme D., I. Piché, A.R. Michaud, Y. Bédard, G. Trencia, R. Laroche, L. Champagne and J.-M. Gouin. 1997. Situation environnementale du bassin de la rivièere Boyer. MENV, MAPAQ, SLV 2000, Groupe d’Intervention de la rivièere Boyer, Qc, Canada.Google Scholar
  37. Lapp, P. 1996. The hydrology and water quality of an intensive agricultural watershed in Québec. M.Sc. Thesis. Department of Agricultural Engineering, McGill University, Montreal, Canada.Google Scholar
  38. Lapp, P., C.A. Madramootoo, P. Enright amd J. Perrone. 1998. Water quality on an intensive agricultural watershed in Québec. J. Amer. Water Res. Assoc. 34 (2): 427–437.CrossRefGoogle Scholar
  39. Lauzier, R. and E. Gasser. 2002. The Coopérative de solidarité de la rivière aux Brochets: concrete measures to reduce phosphorus loadings. Lake Champlain Research Consortium, Symposium 2002: Lake Champlain in the new millennium. Saint-Jean-sur-Richelieu, Québec.Google Scholar
  40. Lemunyon, J.L. and R.G. Gilbert. 1993. The concept and need for a phosphorus assessment tool, J. Prod. Agric., 6: 483–496.Google Scholar
  41. MAPINFO, 1996. Mapinfo Corporation. Troy, NY.Google Scholar
  42. Michaud, A. R. and M. R. Laverdière. 2003. Effects of cropping, soil type and manure application on phosphorus export and bioavaibility. Can. J. Soil Sci. (under review).Google Scholar
  43. Mehlich, A., 1984. Mehlich-3 soil extractant: A modification to Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15: 1049–1416.Google Scholar
  44. Monfet, J. 1979. Evaluation du coefficient de ruissellement à l’aide de la méthode SCS modifiée. Service de l’hydrométrie, Ministère de l’Environnement du Québec, Publication Na HP-51, Québec.Google Scholar
  45. Murphy, J., and J.R. Riley. 1962. A modified single solution method for the determination of phosphates in surface waters. Anal. Acta 27: 31–36.CrossRefGoogle Scholar
  46. Pote, D.H., T.C. Danial, D.J. Nichols, A.N. Sharpley, P.A. Moore, Jr., D.M. Miller and D.R. Edwards. 1999. Relationship between phosphorus levels in three Ultisols and phosphorus concentration in runoff. J. Env. Qual. 28: 170–175.CrossRefGoogle Scholar
  47. Preedy, N., K. McTiernan, R. Matthews, L. Heathwaite and P. Haygarth, 2001 ), Rapid incidental phosphorus transfers from grassland, J. Environn. Qual. 30: 2105–2112.CrossRefGoogle Scholar
  48. Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCooland, and D.C. Yoder. 1993. Predicting erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA-ARS agricultural Handbook.Google Scholar
  49. Sharpley, A.N., W.W. Troeger and S.J. Smith. 1991. The measurement of bioavailable phosphorus un agricultural runoff. J. Env. Qual. 20: 235–238.CrossRefGoogle Scholar
  50. Sharpley A.N. and Withers, P.A. 1994. The environnementally sound management of agricultural phosphorus, Fertilizer Res., 39: 133–146.CrossRefGoogle Scholar
  51. Sharpley, A.N., T.C. Daniels, J.T. Sims, and D.H. Pote. 1996. Determining environmentally sound soil phosphorus levels. J. Soil Water Conserv. 51: 160–166.Google Scholar
  52. Sharpley A.N., R.W. McDowell, J.L. Weld and P.J.A. Kleinman. 2001. Assesing site vulnerability to phosphorus loss in an agricultural watershed. J. Environ. Qual. 30: 2026–2036.CrossRefGoogle Scholar
  53. Soil Conservation Service, U.S. Department of Agriculture. 1972. Hydrology. In: National Engineering Handbook. Washington D.C. pp.10. 5–10. 6.Google Scholar
  54. Statistical analysis system. 2000. SAS 8.0 for Windows. SAS Institute Inc. Cary, NC.Google Scholar
  55. Tabi, M., L. Tardif, D. Carrier, G. Laflamme and M. Rompré. 1990. Inventaire des problématiques de dégradation des sols du Québec: région agricole du Richelieu-Saint-Hyacinthe. Ministère de l’Agriculture, des pêcheries et de l’alimentation du Québec, Entente auxiliaire Canada-Québec sur le Développement agroalimentaire. 119 p.Google Scholar
  56. Tran, T.S. et M.Giroux. 1990. Relation entre les propriétés du sol et la disponibilité du P à la plante. Agrosol 3 (1): 7–12.Google Scholar
  57. Vermont Department of Environmental Conservation (VDEC) and New York Department of Environmental Conservation (NYDEC). 1992. Lake Champlain Diagnostic-Feasibility Study. Interim progress report. Waterbury, VT and Albany, NY.Google Scholar
  58. Walker, W.W. 1987. Empirical methods for predicting eutrophication in impoundments. Report 4: Applications manual Tech. Rep. E-81–9. Prep. For U.S. Army Corps Eng. Waterways experiment station, Vicksburg, MS.Google Scholar
  59. Walker, W. 1998. Flux, Stream loads computations, version 5. 0. Environmental laboratory USAE Waterways Experiment Station. Vichsburg, Misissipi, USA.Google Scholar
  60. Wolf, A., A.N. Sharpley, L. Ressler, T. Esser, and Les E. Lanyon. 2000. Concerns and recommendations of the workgroups. In A.N. Sharpley, Ed., Agriculture and phosphorus management: the Chesapeake bay, Lewis Publishers, Boca Raton, Florida.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Aubert R. Michaud
    • 1
  • Richard Lauzier
  • Marc R. Laverdière
  1. 1.Institut de recherche et développement en agroenvironnementCanada

Personalised recommendations