Microbial Pathogens and Integrin Interactions

  • Eric S. Krukonis
  • Ralph R. Isberg

Abstract

Pathogens interact with host tissues in a manner that allows their survival and multiplication within these sites as well as their spread to a new host. Pathogens have adopted numerous strategies of host colonization, including binding or entering into host cells. Pathogens either express their own ligand that allows host cell binding or they recruit host factors to serve as a bridge between the microbe and the host. The choice of which receptor is bound by the microorganism is important in determining the cellular response of the host and, ultimately, the fate of the microorganism.

Keywords

Pertussis Toxin Integrin Receptor Borrelia Burgdorferi Bordetella Pertussis Bacterial Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svensson U, Persson R. Entry of adenovirus 2 into HeLa cells. J Virology 1984; 51 (3): 687–94.PubMedGoogle Scholar
  2. 2.
    Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR. Integrin αvβ5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127 (1): 257–64.PubMedGoogle Scholar
  3. 3.
    Mette SA, Pilewski J, Buck CA, Albelda SM. Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am J Respir Cell & Mol Biol 1993; 8 (5): 562–72.Google Scholar
  4. 4.
    Tran Van Nhieu G, Isberg RR. Bacterial internalization mediated by 131 chain integrins is determined by ligand affinity and receptor density. EMBO J 1993; 12 (5): 1887–95.Google Scholar
  5. 5.
    Falkow S, Isberg RR, Portnoy DA. The interaction of bacteria with mammalian cells. {Review]. Annu Rev Cell Biol 1992; 8 (333): 333–63.PubMedGoogle Scholar
  6. 6.
    Wright SD, Silverstein SC. Receptors for C36 and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 1983; 158 (6): 2016–23.PubMedGoogle Scholar
  7. 7.
    Mosser DM, Edelson PJ. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 1987; 327 (6120): 329–31.PubMedGoogle Scholar
  8. 8.
    Relman D, Tuomanen E, Falkow S, Golenbock DT, Saukkonen K, Wright SD. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (aM(32, CDl 1 b/CD18) hinds filamentous hemagglutinin of Bordetella pertussis. Cell 1990; 61 (7): 1375–82.PubMedGoogle Scholar
  9. 9.
    Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW. Identification of the integrin VLA-2 as a receptor for echo-virus 1 [see comments). Science 1992; 255 (5052): 1718–20.PubMedGoogle Scholar
  10. Bergelson JM, St. John N, Kawaguchi S, Chan M, Stubdal H, Modlin J, Finberg RW. Infection by echoviruses 1 and 8 depends on the a2 subunit of human VLA-2. J Virology 1993; 67(11):6847–52.Google Scholar
  11. 11.
    Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T. Entry of coxsackievirus A9 into host cells: specific interactions with av(33 integrin, the vitronectin receptor. Virology 1994; 203 (2): 357–65.PubMedGoogle Scholar
  12. 12.
    Bergelson JM, Chan BM, Finberg RW, Hemler ME. The integrin VLA-2 binds echovirus 1 and extracellular matrix ligands by different mechanisms. J Clin Invest 1993; 92 (1): 232–9.PubMedGoogle Scholar
  13. 13.
    Kamata T, Puzon W, Takada Y. Identification of putative ligand binding sites within I domain of integrin a2131 (VLA-2, CD49b/CD29). J Biol Chem 1994; 269 (13): 9659–63.PubMedGoogle Scholar
  14. Bergelson JM, St. John N, Kawaguchi S, Pasqualini R, Berdichevsky F, Hemler ME, Finberg RW. The I domain is essential for echovirus 1 interaction with VLA-2. Cell Adh Comm 1994; 2(5):455–64.Google Scholar
  15. 15.
    King SL, Cunningham JA, Finberg RW, Bergelson JM. Echovirus 1 interaction with the isolated VLA-2 I domain [published erratum appears in J Virol 1995 Jun; 69(6): 3965). J Virology 1995; 69 (5): 3237–9.Google Scholar
  16. 16.
    Randi AM, Hogg N. I domain of 32 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1. J Biol Chem 1994; 269 (17): 12395–8.PubMedGoogle Scholar
  17. 17.
    Ueda T, Rieu P, Brayer J, Arnaout MA. Identification of the complement iC3b binding site in the 132 integrin CR3 (CD11b/ CD18). Proc Natl Acad Sci USA 1994; 91 (22): 10680–4.PubMedGoogle Scholar
  18. 18.
    Ennis E, Isberg RR, Shimizu Y. Very late antigen 4-dependent adhesion and costimulation of resting human T cells by the bacterial 31 integrin ligand invasin. J Exp Med 1993; 177 (1): 207–12.PubMedGoogle Scholar
  19. 19.
    Tran Van Nhieu G, Isberg RR. The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the 0131 integrin receptor. J Biol Chem 1991; 266 (36): 24367–75.Google Scholar
  20. 20.
    Roivainen M, Hyypia T, Piirainen L, Kalkkinen N, Stanway G, Hovi T. RGDdependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J Virology 1991; 65 (9): 4735–40.PubMedGoogle Scholar
  21. 21.
    Chang KH, Day C, Walker J, Hyypia T, Stanway G. The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. J Gen Vir 1992.Google Scholar
  22. 22.
    Hughes PJ, Horsnell C, Hyypia T, Stanway G. The coxsackievirus A9 RGD motif is not essential for virus viability. J Virology 1995; 69 (12): 8035–40.PubMedGoogle Scholar
  23. 23.
    Scott JL. Picornaviridae. In: Biberstein EL, Zee YC, eds. Review of Veterinary Microbiology. Vol 1. Chicago: Blackwell Scientific Publications Inc., 1990: 480–483.Google Scholar
  24. 24.
    Fox G, Parry NR, Barnett PV, McGinn B, Rowlands DJ, Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Vir 1989; 70 (Pt 3): 625–37.Google Scholar
  25. 25.
    Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N, Rowlands D, Stuart D, Fry E. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 1993; 362 (6420): 566–8.PubMedGoogle Scholar
  26. 26.
    Verdaguer N, Mateu MG, Andreu D, Giralt E, Domingo E, Fita I. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-GlyAsp motif in the interaction. EMBO J 1995; 14 (8): 1690–6.PubMedGoogle Scholar
  27. 27.
    Martinez MA, Hernandez J, Piccone ME, Palma EL, Domingo E, Knowles N, Mateu MG. Two mechanisms of antigenic diversification of foot-and-mouth disease virus. Virology 1991; 184 (2): 695–706.PubMedGoogle Scholar
  28. 28.
    Mateu MG, Martinez MA, Rocha E, Andreu D, Parejo J, Giralt E, Sobrino F, Domingo E. Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus. Proc Natl Acad Sci USA 1989; 86 (15): 5883–7.PubMedGoogle Scholar
  29. 29.
    Hernandez J, Martinez MA, Rocha E, Domingo E, Mateu MG. Generation of a subtype-specific neutralization epitope in foot-and-mouth disease virus of a different subtype. J Gen Vir 1992.Google Scholar
  30. 30.
    Borrego B, Novella IS, Giralt E, Andrew D, Domingo E. Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J Virology 1993; 67 (10): 6071–9.PubMedGoogle Scholar
  31. 31.
    Martinez MA, Carrillo C, Gonzalez CF, Moya A, Domingo E, Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J Virology 1991; 65 (7): 3954–7.PubMedGoogle Scholar
  32. 32.
    Mateu MG, Martinez MA, Capucci L, Andreu D, Giralt E, Sobrino F, Brocchi E, Domingo E. A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. J Gen Vir 1990.Google Scholar
  33. 33.
    Mason PW, Rieder E, Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci USA 1991; 91 (5): 1932–6.Google Scholar
  34. 34.
    Berinstein A, Roivainen M, Flovi T, Mason PW, Baxt B. Antibodies to the vitronectin receptor (integrin aV(33) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virology 1995; 69 (4): 2664–6.PubMedGoogle Scholar
  35. 35.
    Stewart PL, Fuller SD, Burnett RM. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 1993; 12 (7): 2589–99.PubMedGoogle Scholar
  36. 36.
    Greber UF, Willetts M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75 (3): 477–86.PubMedGoogle Scholar
  37. 37.
    Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins av133 and av15 promote adenovirus internalization but not virus attachment. Cell 1993; 73 (2): 309–19.PubMedGoogle Scholar
  38. 38.
    Mathias P, Wickham T, Moore M, Nemerow G. Multiple adenovirus serotypes use av integrins for infection. J Virology 1994; 68 (10): 6811–4.PubMedGoogle Scholar
  39. 39.
    Nemerow GR, Cheresh DA, T. J. W. Adenovirus entry into host cells: a role for av integrins. Trends Cell Biol 1994; 4: 52–55.PubMedGoogle Scholar
  40. 40.
    Panetti TS, McKeown LP. Receptor-mediated endocytosis of vitronectin is regulated by its conformational state. J Biol Chem 1993; 268 (16): 11988–93.PubMedGoogle Scholar
  41. 41.
    Seth P, Pastan I, Willingham MC. Adenovirusdependent increase in cell membrane permeability. J Biol Chem 1985; 260 (17): 9598–602.PubMedGoogle Scholar
  42. 42.
    Seth P. Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J Virology 199 4; 68(2):1204–6.Google Scholar
  43. 43.
    Perez L, Carrasco L. Involvement of the vacuolar H(+)-AT-Pase in animal virus entry. J Gen Vir 1994; 75: 2595–2606.Google Scholar
  44. 44.
    Furtado GC, Slowik M, Kleinman HK, Joiner KA. Laminin enhances binding of Toxoplasma gondii tachyzoites to J774 murine macrophage cells. Infect Immun 1992; 60 (61): 2337–12.PubMedGoogle Scholar
  45. 45.
    Furtado GC, Cao Y, Joiner KA. Laminin on Toxoplasma gondii mediates parasite binding to the f31 integrin receptor a6ß1 on human foreskin fibroblasts and Chinese hamster ovary cells. Infect Immun 1992; 60 (11): 4925–31.PubMedGoogle Scholar
  46. 46.
    McMahon JP, Wheat J, Sobel ME, Pasula R, Downing JF, Martin W, II. Murine laminin binds to Histoplasma capsulatum. A possible mechanism of dissemination. J Clin Invest 1995; 96 (2): 1010–7.PubMedGoogle Scholar
  47. 47.
    Plotkowski MC, Tournier JM, Puchelle E. Pseudomonas aeruginosa strains possess specific adhesins for laminin. Infect Immun 1996; 64 (2): 600–5.PubMedGoogle Scholar
  48. 48.
    Narasimhan S, Armstrong MY, Rhee K, Edman JC, Richards FF, Spicer E. Gene for an extracellular matrix receptor protein from Pneumocystis carinii. Proc Natl Acad Sci USA 1994; 91 (147): 440–4.Google Scholar
  49. 49.
    Hook M, Switalski LM, Wadstrom T, Lindberg M. Interactions of pathogenic microorganisms with fibronectin. In: Mosher DF, ed. Fibronectin. Vol 1. New York: Academic Press Inc., 1989: 295–308.Google Scholar
  50. 50.
    Schmidt KH, Kohler W. Interaction of streptococcal cell wall components with fibrinogen. I. adsorption of fibrinogen by immobilized T-proteins of streptococcus pyogenes. Immunobiology 1981; 158 (4): 330–7.PubMedGoogle Scholar
  51. 51.
    Schonbeck C, Bjorck L, Kronvall G. Receptors for fibrinogen and aggregated 132microglobulin detected in strains of group B streptococci. Infect Immun 1981; 31 (3): 856–61.PubMedGoogle Scholar
  52. 52.
    Runehagen A, Schonbeck C, Hedner U, Hessel B, Kronvall G. Binding of fibrinogen degradation products to S. aureus and to 13-hemolytic streptococci group A, C and G. Acta Pathologica et Microbiologica Scandinavica Section B, Microbiology 1981; 89 (2): 49–55.PubMedGoogle Scholar
  53. 53.
    Fitzgerald TJ, Repesh LA, Blanco DR, Miller JN. Attachment of Treponema pallidum to fibronectin, laminin, collagen IV, and collagen I, and blockage of attachment by immune rabbit IgG. Brit J of Vener Dis 1984; 60 (6): 357–63.Google Scholar
  54. 54.
    Thomas DD, Baseman JB, Alderete JF. Fibronectin tetrapeptide is target for syphilis spirochete cytadherence. J Exp Med 1985; 162 (5): 1715–9.PubMedGoogle Scholar
  55. 55.
    Schulze-Koops H, Burkhardt H, Heesemann J, Kirsch T, Swoboda B, Bull C, Goodman S, Emmrich F. Outer membrane protein YadA of enteropathogenic yersiniae mediates specific binding to cellular but not plasma fibronectin. Infect Immun 1993; 61 (6): 2513–9.PubMedGoogle Scholar
  56. 56.
    Fernandez MA, Munoz FM, Fresno M. Involvement of 131 integrins in the binding and entry of Trypanosoma cruzi into human macrophages. Eur J of Immunol 1993; 23 (2): 552–7.Google Scholar
  57. 57.
    Virji M, Makepeace K, Ferguson D, Achtman M, Sarkari J, Moxon E. Expressinn of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitides. Mol Micro 1992; 6 (19): 2785–2795.Google Scholar
  58. 58.
    Virji M, Makepeace K, Ferguson D, Achtman M, Moxon E. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Micro 1993; 10 (3): 499–510.Google Scholar
  59. 59.
    Craven D, Peppler M, Frasch C, Mocca L, McGrath P. The role of Neisseria meningitidis surface structures in the adherence of case and carrier isolates. In: Danielsson D, Normark S, eds. Genetics and Immunobiology of Pathogenic Neisseria. Hemavan, Sweden: Proceedings of an EMBO Workshop, 1980: 189–193.Google Scholar
  60. 60.
    Cartwright K, Stuart J, Jones D, Noah N. The Stonehouse Survey-nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 1987; 99: 591–601.PubMedGoogle Scholar
  61. 61.
    Virji M, Makepeace K, Moxon ER. Distinct mechanisms of interactions of Opcexpressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Micro 1994; 14 (1): 173–84.Google Scholar
  62. 62.
    Petersen TE, Skorstengaard K, Vibe-Pedersen K. Primary structure of fibronectin. In: Mosher DF, ed. Fibronectin. Vol 1. New York: Academic Press, 1989: 1–24.Google Scholar
  63. 63.
    Ozeri V, Tovi A, Burstein I, NatansonYaron S, Caparon MG, Yamada KM, Akiyama SK, Vlodaysky I, Hanski E. A two-domain mechanism for group A streptococcal adherence through protein F to the extracellular matrix. EMBO J 1996; 15 (5): 989–98.PubMedGoogle Scholar
  64. 64.
    Joh HJ, House-Pompeo K, Patti JM, Gurusiddappa S, Hook M. Fibronectin receptors from gram-positive bacteria: comparison of active sites. Biochemistry 1994; 33 (20): 6086–92.PubMedGoogle Scholar
  65. 65.
    van der Flier M, Chhun N, Wizemann TM, Min J, McCarthy JB, Tuomanen EI. Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect Immun 1995; 63 (11): 4317–22.PubMedGoogle Scholar
  66. 66.
    Froman G, Switalski LM, Faris A, Wadstrom T, Hook M. Binding of Escherichia coli to fibronectin. A mechanism of tissue adherence. J Biol Chem 1984; 259 (23): 14899–905.PubMedGoogle Scholar
  67. 67.
    Frick IM, Crossin KL, Edelman GM, Bjorck L. Protein bacterial surface protein with affinity for both immunoglobulin and fibronectin type III domains. EMBO J 1995; 14 (8): 1674–9.PubMedGoogle Scholar
  68. 68.
    Flock JI, Froman G, Jonsson K, Guss B, Signas C, Nilsson B, Raucci G, Hook M, Wadstrom T, Lindberg M. Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J 1987; 6 (8): 2351–7.PubMedGoogle Scholar
  69. 69.
    Signas C, Raucci G, Jonsson K, Lindgren PE, Anantharamaiah GM, Hook M, Lindberg M. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci USA 1989; 86 (2): 699–703.PubMedGoogle Scholar
  70. 70.
    Raja RH, Raucci G, Hook M. Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-containing substrates. Infect Immun 1990; 58 (8): 2593–8.PubMedGoogle Scholar
  71. 71.
    Hanski E, Caparon M. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci USA 1992; 89 (13): 6172–6.PubMedGoogle Scholar
  72. 72.
    Lindgren PE, Speziale P, McGavin M, Monstein HJ, Hook M, Visai L, Kostiainen T, Bozzini S, Lindberg M. Cloning and expression of two different genes from Streptococcus dysgalactiae encoding fibronectin receptors. J Biol Chem 1992; 267 (3): 1924–31.PubMedGoogle Scholar
  73. 73.
    McGavin MJ, Gurusiddappa S, Lindgren PE, Lindberg M, Raucci G, Hook M. Fibronectin receptors from Streptococcus dysgalactiae and Staphylococcus aureus. Involvement of conserved residues in ligand binding. J Biol Chem 1993; 268 (32): 23946–53.PubMedGoogle Scholar
  74. 74.
    Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extra-cellular matrix. [Review). Mol Micro 1993; 9 (4): 687–94.Google Scholar
  75. 75.
    Westerlund B, van Die I, Kramer C, Kuusela P, Holthofer H, Tarkkanen AM, Virkola R, Riegman N, Bergmans H, Hoekstra W, Korhonen TK. Multifunctional nature of P fimbriae of uropathogenic Escherichia coli: mutations in fsoE and fsoF influence fimbrial binding to renal tubuli and immobilized fibronectin. Mol Micro 1991; 5 (12): 2965–75.Google Scholar
  76. 76.
    Kreikemeyer B, Talay SR, Chhatwal GS. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol Micro 1995; 17 (1): 137–45.Google Scholar
  77. 77.
    Olsen A, Jonsson A, Normark S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 1989; 338 (6217): 652–5.PubMedGoogle Scholar
  78. 78.
    Lee JY, Caparon M. An oxygen-induced but protein F-independent fibronectin-binding pathway in Streptococcus pyogenes. Infect Immun 1996; 64 (2): 413–21.PubMedGoogle Scholar
  79. 79.
    Sela S, Aviv A, Tovi A, Burstein I, Caparon MG, Hanski E. Protein F: an adhesin of Streptococcus pyogenes hinds fibronectin via two distinct domains. Mol Micro 1993; 10 (5): 1049–55.Google Scholar
  80. 80.
    Benhaim P, Hunt TK. Natural resistance to infection: leukocyte functions. J Burn Care Rehab 1992; 13(2 Pt 23: 287–92.Google Scholar
  81. 81.
    Harding C, Song R, Griffin’, France’, Wick M, Pfeifer J, Geuze H. Processing of bacterial antigens for presentation to class 1 and class II M-IC-restricted T lymphocytes. Infectious Agents & Disease 1995; 4 (1): 1–12.Google Scholar
  82. 82.
    Wisseman CJ, Waddell AD. In vitro studies on rickettsia-host cell interactions: intracellular growth cycle of virulent and attenuated Rickettsia prowazeki in chicken embryo cells in slide chamber cultures. Infect Immun 1975; 11 (63): 1391–404PubMedGoogle Scholar
  83. 83.
    Horwitz MA. Characterization of avinilent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J Exp Med 1987; 166 (5): 1310–28.PubMedGoogle Scholar
  84. 84.
    Hackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 1981; 78 (5): 3240–1.PubMedGoogle Scholar
  85. 85.
    Pearson RD, Steigbigel RT. Mechanism of lethal effect of human serum upon Leishmania donovani. J Immunol 1980; 125 (5): 2195–201.PubMedGoogle Scholar
  86. 86.
    Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 1991; 173 (53): 1143–9.PubMedGoogle Scholar
  87. 87.
    Payne NR, Horwitz MA. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med 1987; 166 (5): 1377–89.PubMedGoogle Scholar
  88. 88.
    Gbarah A, Gahmberg CG, Ofek I, Jacobi U, Sharon N. Identification of the leukocyte adhesion molecules CDI I and CD18 as receptors for type 1-fimbriated (mannosespecific) Escherichia coli. Infect Immun 1991; 59 (12): 4524–30.PubMedGoogle Scholar
  89. 89.
    Bullock WE, Wright SD. Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J Exp Med 1987; 165 (1): 195–210.PubMedGoogle Scholar
  90. 90.
    Mosser DM, Edelson PJ. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol 1985; 135 (4): 2785–9.PubMedGoogle Scholar
  91. 91.
    Wilson ME, Pearson RD. Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun 1988; 56 (2): 363–9.PubMedGoogle Scholar
  92. 92.
    Russell DG, Wright SD. Complement receptor type 3 (CR3) binds to an Arg-GlyAsp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J Exp Med 1988; 168 (1): 279–92.PubMedGoogle Scholar
  93. 93.
    Mosser DM, Edelson PJ. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol 1985; 135 (4): 2785–9.PubMedGoogle Scholar
  94. 94.
    Russell DG, Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol 1986; 136 (7): 2613–20.PubMedGoogle Scholar
  95. 95.
    Handman E, Goding JW. The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J 1985; 4 (2): 329–36.PubMedGoogle Scholar
  96. 96.
    Wright SD, Licht MR, Craigmyle LS, Silverstein SC. Communication between receptors for different ligands on a single cell: ligation of fibronectin receptors induces a reversible alteration in the function of complement receptors on cultured human monocytes. J Cell Biol 1984; 99: 336–339.PubMedGoogle Scholar
  97. 97.
    Blystone SD, Lindberg FP, LaFlamme SE, Brown EJ. Integrin ß3 cytoplasmic tail is necessary and sufficient for regulation of u5131 phagocytosis by a5ß3 and integrinassociated protein. J Cell Biol 1995; 130 (3): 745–54.PubMedGoogle Scholar
  98. 98.
    Van Strijp JA, Russell DG, Tuomanen E, Brown EJ, Wright SD. Ligand specificity of purified complement receptor type three (CD11b/CD18, amß2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J Immunol 1993; 151 (6): 3324–36.PubMedGoogle Scholar
  99. 99.
    Zhou M, Brown EJ. Leukocyte response integrin and integrin-associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst. J Exp Med 1993; 178 (4): 1165–74.PubMedGoogle Scholar
  100. 100.
    Hermanowski-Vosatka A, Van Strijp J, Swiggard WJ, Wright SD. Integrin modulating factor-1: a lipid that alters the function of leukocyte integrins. Cell 1992; 68 (2): 341–52.PubMedGoogle Scholar
  101. 101.
    Cheers C, Gray DF. Macrophage behaviour during the complaisant phase of murine pertussis. Immunology 1969; 17 (6): 875–87.PubMedGoogle Scholar
  102. 102.
    Tuomanen E, Towbin H, Rosenfelder G, Braun D, Larson G, Hansson GC, Hill R. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J Exp Med 1988; 168 (1): 267–77.PubMedGoogle Scholar
  103. 103.
    Sekura R, Quentin-Millet M. Pertussis toxin: identification of the carbohydrate receptor. In: Lark DL, ed. Protein-Carbohydrate Interactions in Biological Systems. New York: Academic Press, 1986: 241–242.Google Scholar
  104. 104.
    Witvliet MH, Burns DL, Brennan MJ, Poolman JT, Manclark CR. Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun 1989; 57 (11): 3324–30.PubMedGoogle Scholar
  105. 105.
    Brennan MJ, David JL, Kenimer JG, Manclark CR. Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J Biol Chem 1988; 263 (10): 4895–9.PubMedGoogle Scholar
  106. 106.
    Makhov AM, Hannah JH, Brennan MJ, Trus BL, Kocsis E, Conway JF, Wingfield PT, Simon MN, Steven AC. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in ß strands and turns. J Mol Biol 1994; 241 (1): 110–24.PubMedGoogle Scholar
  107. 107.
    Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, Novotny P, Brennan MJ. Pertactin, an Arg-Gly-Aspcontaining Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 1991; 88 (2): 345–9.PubMedGoogle Scholar
  108. 108.
    De Magistris MT, Romano M, Nuti S, Rappuoli R, Tagliabue A. Dissecting human T cell responses against Bordetella species. J Exp Med 1988; 168 (4): 1351–62.PubMedGoogle Scholar
  109. 109.
    Ishibashi Y, Claus S, Relman DA. Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD1 lb/CD18). J Exp Med 1994; 180 (4): 1225–33.PubMedGoogle Scholar
  110. 110.
    Hazenbos W, van den Berg B, van Furth R. Very late antigen-5 and complement receptor type 3 cooperatively mediate the interaction between Bordetella pertussis and human monocytes. J Immunol 1993; 151 (11): 6274–82.PubMedGoogle Scholar
  111. 111.
    Senior RM, Gresham HD, Griffin GL, Brown EJ, Chung AE. Entactin stimulates neutrophil adhesion and chemotaxis through interactions between its Arg-Gly-Asp(RGD) domain and the leukocyte response integrin. J Clin Invest 1992; 90 (6): 2251–7.PubMedGoogle Scholar
  112. 112.
    Lo S, Lee S, Ramos R, Lobb R, Rosa M, ChiRosso G, Wright S. Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11 b/CD18, Mac-1, amß2) on human neutrophils. J Exp Med 1991; 173: 1493–1500.PubMedGoogle Scholar
  113. 113.
    Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272: 60–66.PubMedGoogle Scholar
  114. 114.
    Watarai M, Funato S, Sasakawa C. Interaction of Ipa proteins of Shigella flexneri with 05β1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med 1996; 183: 991–999.PubMedGoogle Scholar
  115. 115.
    Isberg RR, Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 1985; 317 (6034): 262–4.PubMedGoogle Scholar
  116. 116.
    Isberg RR, Voorhis DL, Falkow S. Identi fication of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 1987; 50 (5): 769–78.PubMedGoogle Scholar
  117. 117.
    Miller VL, Falkow S. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 1988; 56 (5): 1242–8.PubMedGoogle Scholar
  118. 118.
    Grutzkau A, Hanski C, Hahn H, Riecken EO. Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 1990; 31: 1011–1015.PubMedGoogle Scholar
  119. 119.
    Siebers A, Finlay BB. M cells and the pathogenesis of mucosal and systemic infections. Trends in Micro 1996; 4 (1): 22–29.Google Scholar
  120. 120.
    Pepe JC, Miller VL. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sei USA 1993; 90 (14): 6473–7.Google Scholar
  121. 121.
    Leong JM, Fournier RS, lsberg RR. Identi fication of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein. EMBO J 1990; 9 (6): 1979–89.PubMedGoogle Scholar
  122. 122.
    Rankin S, Isberg RR, Leong JM. The integrin binding domain of invasin is sufficient to allow bacterial entry into mammalian cells. Infect Immun 1992; 60 (9): 3909–12.PubMedGoogle Scholar
  123. 123.
    Leong JM, Morrissey PE, Marra A, Isberg RR. An aspartate residue of the Yersinia pseudotuberculosis invasin protein that is critical for integrin binding. EMBO J 1995; 14 (3): 422–31.PubMedGoogle Scholar
  124. 124.
    Leong JM, Morrissey PE, Isberg RR. A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. J Biol Chem 1993; 268 (27): 20524–32.PubMedGoogle Scholar
  125. 125.
    Isberg RR, Leong JM. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 1990; 60 (5): 861–71.PubMedGoogle Scholar
  126. 126.
    Tran Van Nhieu G, Krukonis ES, Reszka AA, Horwitz AF, lsberg RR. Mutations in the cytoplasmic domain of the integrin βl chain indicate a role for endocytosis factors in bacterial internalization. J Biol Chem 1996; 271 (13): 7665–7672.Google Scholar
  127. 127.
    Rosenshine I, Duronio V, Finlay BB. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. Infect Immun 1992; 60 (6): 2211–7.PubMedGoogle Scholar
  128. 128.
    Young VB, Falkow S, Schoolnik GK. The invasin protein of Yersinia enterocolitica: internalization of invasin-bearing bacteria by eukaryotic cells is associated with reorganization of the cytoskeleton. J Cell Biol 1992; 116 (1): 197–207.PubMedGoogle Scholar
  129. 129.
    Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K. Glucosylation of rho proteins by Clostridium dijlicile toxin B Nature 1995; 375: 500–503.Google Scholar
  130. 130.
    Young VB, Miller VL, Falkow S, Schoolnik GK. Sequence, localization and function of the invasin protein of Yersinia enterocolitica. Mol Micro 1990; 4 (7): 1119–28.Google Scholar
  131. 131.
    Saltmann LH, Liu Y, Zaharias E, Isberg RR. Journal Biological Chemistry 1996; (in press).Google Scholar
  132. 132.
    Brett SJ, Mazurov AV, Charles IG, Tite JP. The invasin protein of Yersinia spp. provides co-stimulatory activity to human T cells through interaction with 131 integrins. Eur Jour of Immunol 1993; 23 (7): 1608–14.Google Scholar
  133. 133.
    Aota S, Nagai T, Yamada KM. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J Biol Chem 1991; 266 (24): 15938–43.PubMedGoogle Scholar
  134. 134.
    Takada Y, Ylanne J, Mandelman D, Puzon W, Ginsberg MH. A point mutation of integrin ßl subunit blocks binding of a5131 to fibronectin and invasin but not recruitment to adhesion plaques. J Cell Biol 1992; 119 (4): 913–21.PubMedGoogle Scholar
  135. 135.
    Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL, III, Ginsberg MH. A ß3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249 (4971): 915–8.PubMedGoogle Scholar
  136. 136.
    D’Souza SE, Haas TA, Piotrowicz RS, Byers-Ward V, McGrath DE, Soule HR, Cierniewski C, Plow EF, Smith JW. Ligand and cation binding are dual functions of a discrete segment of the integrin 33 subunit: cation displacement is involved in ligand binding. Cell 1994; 79 (4): 659–67.PubMedGoogle Scholar
  137. 137.
    Strynadka NC, James MN. Crystal structures of the helix-loop-helix calcium-binding proteins. [Review). Ann Rev Bioc 1989; 58 (951): 951–98.Google Scholar
  138. 138.
    Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the a subunit of integrin CR3 (CD11b/ CD18). Cell 1995; 80 (4): 631–8.PubMedGoogle Scholar
  139. 139.
    Bajt ML, Loftus JC. Mutation of a ligand binding domain of 33 integrin. Integral role of oxygenated residues in alIbß3 (GPIIbIIIa) receptor function. J Biol Chem 1994; 269 (33): 20913–9.Google Scholar
  140. 140.
    Thomas DD, Comstock LE. Interaction of Lyme disease spirochetes with cultured eucaryotic cells. Infect Immun 1989; 57 (4): 1324–6.PubMedGoogle Scholar
  141. 141.
    Szczepanski A, Furie MB, Benach JL, Lane BP, Fleit HB. Interaction between Borrelia burgdorferi and endothelium in vitro. J Clin Invest 1990; 85 (5): 1637–47.PubMedGoogle Scholar
  142. 142.
    Hechemy KE, Samsonoff WA, Harris HL, McKee M. Adherence and entry of Borrelia burgdorferi in Vero cells. J Med Micro 1992; 36 (4): 229–38.Google Scholar
  143. 143.
    Galbe JL, Guy E, Zapatero JM, Peerschke EI, Benach JL. Vascular clearance of Borrelia burgdorferi in rats. Microb Path 1993; 14 (3): 187–201.Google Scholar
  144. 144.
    Chugh TD, Burns GJ, Shuhaiber HJ, Bahr GM. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid. Infection and Immunity 1990; 58: 315–319.PubMedGoogle Scholar
  145. 145.
    Herzberg MC, MacFarlane GD, Gong K, Armstrong NN, Witt AR, Erickson PR, Meyer MW. The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun 1992; 60 (11): 4809–18.PubMedGoogle Scholar
  146. 146.
    Erickson PR, Herzberg MC. Purification and partial characterization of a 65-kDa platelet aggregation-associated protein antigen from the surface of Streptococcus sanguis. J Biol Chem 1990; 265 (24): 14080–7.PubMedGoogle Scholar
  147. 147.
    Coburn J, Leong JM, Erban JK. Integrin aIlb133 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci USA 1993; 90 (15): 7059–63.PubMedGoogle Scholar
  148. 148.
    Coburn J, Barthold SW, Leong JM. Diverse Lyme disease spirochetes bind integrin u11b133 on human platelets. Infect Immun 1994; 62 (12): 5559–67.PubMedGoogle Scholar
  149. 149.
    Leong JM, Morrissey PE, Ortega-Barria E, Pereira ME, Coburn J. Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 1995; 63 (3): 874–83.PubMedGoogle Scholar
  150. 150.
    Bellinger-Kawahara C, Horwitz MA. Complement component C3 fixes selectively to the major outer membrane protein (MOMP) of Legionella pneumophila and mediates phagocytosis of liposome-MOMP complexes by human monocytes. J Exp Med 1990; 172: 1201–1210.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Eric S. Krukonis
  • Ralph R. Isberg

There are no affiliations available

Personalised recommendations