Wide-Range Characteristic Thermodynamic Curves

  • N. N. Kalitkin
  • L. V. Kuzmina
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The thermodynamic properties of materials are investigated at megabar pressures with experimental and theoretical methods. At pressures of 0–1 Mbar (sometimes up to 3 Mbar) there are numerous experiments on static compressibility. In the range 0.2–20 Mbar there are also numerous shock-wave compression experiments done using explosive devices and light-gas guns. Some shock-compression experiments have been performed near underground nuclear explosions at pressures of 20–500 Mbar. No experiments have been conducted at higher pressures and none can be conducted in the near future.

Keywords

Diamond Anvil Cell Shell Effect Hugoniot Curve Nonideal Plasma Underground Nuclear Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.N. Kalitkin, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 114–161.Google Scholar
  2. [2]
    A.F. Nikiforov, V.G. Novikov, and V.B. Uvarov, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 162–196.Google Scholar
  3. [3]
    G.V. Sin’ko, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 197–230.Google Scholar
  4. [4]
    B.K. Vodolaga, and V.A. Simonenko, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 73–113.Google Scholar
  5. [5]
    N.N. Kalitkin, Math. Modelirovanie 1 (2), pp. 64–108 (1989).MATHGoogle Scholar
  6. [6]
    M. van Thiel (ed.), Compendium of Shock WaveData, Lawrence Livermore National Laboratory report UCRL-50108, Livermore, CA, (1977).Google Scholar
  7. [7]
    S.P. Marsh (ed.), LASL ShockHugoniotData, Univ. Calif. Press, Berkley, (1980).Google Scholar
  8. [8]
    R.F. Trunin (ed.), Condensed Matter Properties Under High Pressures and Temperatures, Min. Nucl. Pow. hid., Arzamas-16, (1992).Google Scholar
  9. [9]
    R.P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75 (10), pp. 1561–1573 (1949).ADSMATHCrossRefGoogle Scholar
  10. [10]
    R. Latter, Phys. Rev. 99 (6), pp. 1854–1870 (1955).ADSMATHCrossRefGoogle Scholar
  11. [11]
    D.A. Kirzhnitz, Sov. Phys.—JETP 5(1), pp. 64–71 (1957). [trans. from Zh. Eksp. Teor. Fiz. 32(1), pp. 115–123 (1957).]Google Scholar
  12. [12]
    N.N. Kalitkin, Soy. Phys.—JETP 11(5), pp. 1106–1110 (1960) [trans. from Zh. Eksp. Teor. Fiz. 38(5) pp., 1534–1540 (1960).Google Scholar
  13. [13]
    N.N. Kalitkin and L. V. Kuz’mina, Russ. J. Plasma Physics 2(5), p. 478 (1976). [trans. from Fiz. Plazmy 2 (5), pp. 858–868 (1976).Google Scholar
  14. [14]
    D.A. Kirzhnitz, Soy. Phys.—JETP 35(8), pp. 1081–1089 (1959). [trans. from Zh. Eksp. Teor. Fiz. 35 (6), pp. 1545–1557 (1958).Google Scholar
  15. [15]
    N.N. Kalitkin, in: Questions of Low-Temperature Plasma Physics, Nauka and Tekhnika, Minsk, (1970), pp. 102–105.Google Scholar
  16. [16]
    V.P. Kopyshev, in: Numerical Methods of Continuous Media Mechanics 8(6), (1977), pp. 54–67.Google Scholar
  17. [17]
    N.N. Kalitkin and L.V. Kuz’mina, in: Numerical Methods of Continuous Media Mechanics 8(6), (1977), pp. 46–53.Google Scholar
  18. [18]
    W. Kohn and P. Vashishta, in: Theory of the Inhomogeneous Electron Gas, Plenum Press, New York, (1983), pp. 79–147.Google Scholar
  19. [19]
    N.H. March and J. Gallaway, in: Solid State Physics 38 (eds. F. Seitz and D. Turnbull) Academic Press, New York, (1984), pp. 135–221.Google Scholar
  20. [20]
    L.V. Altshuler, N.N. Kalitkin, L.V. Kuz’mina, and B.S. Chekin, Soy. Phys.-JETP 45(1) pp. 167–171 (1977). [trans. from Zh. Eksp. Teor. Fiz. 72(1) pp. 317–325 (1977).]Google Scholar
  21. [21]
    K.A. Gshneider, in: Solid State Physics 16 (ed. F. Seitz and D. Turnbull) Acad. Press, New York, (1964), pp. 275–426.Google Scholar
  22. [22]
    R.F.Trunin,Phys.-Usp. 37(1) pp. 1123–1145, (1994). [trans. from Usp. Fiz. Nauk 164(11) pp. 1215–1237 (1994).]Google Scholar
  23. [23]
    N.M. Kuznetzov, Thermodynamic Functions and Hugoniots of Air at High Temperatures, Mashinostroenie, Moscow (1965). (in Russian)Google Scholar
  24. [24]
    A.A. Likalter, Sov. Phys. -JETP 29(1) pp. 133–135, (1969). [trans. from Zh. Eksp. Teor. Fiz, 56(1) pp. 240–245 (1969).]Google Scholar
  25. [25]
    V.P. Kopyshev, Atomic Science and Engineering Questions; Theoretical and Applied Physics 4, pp. 3–10 (1989).Google Scholar
  26. [26]
    V.S. Volokitin, I.O.Golosnoy, and N.N.Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz. (11), pp.23–43 (1994).Google Scholar
  27. [27]
    V.S.Volokitin, I.O.Golosnoy, and N.N.Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz. (4), pp. 11–31 (1995).Google Scholar
  28. [28]
    L.V. A1ttshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, and B.S. Chekin, J. Appl. Mech. Tech. Phys. 22(2), pp. 145–169 (1981). [trans. from PrikL Mekh. Tekh. Fiz. 2, pp. 3–34 (1981).]Google Scholar
  29. [29]
    L.V.A1’tshuler, S.E. Brusnikin, and E.A. Kuzmenkov, J. Appl. Mech Tech. Phys. 28(1), pp. 129–141 (1987). [trans. from PrikL Mekh. Tekh. Fiz. 28(1), pp. 134–146 (1987).]Google Scholar
  30. [30]
    L. V.Altshuler, and S.E.Brusnikin, High Temperature 27(1), pp. 39–47, (1989). [trans. from Teplofizika Vys. Temp. 27(1), pp. 42–51(1989).]Google Scholar
  31. [31]
    N.N.Kalitkin, in: High Pressure Science and Technology, World Sci. Publ., Singapore, (1996) pp. 983–985.Google Scholar
  32. [32]
    N.N.Kalitkin and L. V.Kuz’mina, DokL Akad. Nauk 43 (5), pp. 276–279, (1998).Google Scholar
  33. [33]
    A.I.Voropinov, and G.MGandelman, V.G.Podvalny, Sov Phys.-Usp. 13(1) pp. 56–72 (1970). [trans. from Usp. Fiz. Nauk,100(2), pp.193–224 (1970).]Google Scholar
  34. [34]
    E.Yu. Dnestrovskaya and N.N. Kalitkin, Preprint No. 168, Keldysh Inst. Appl.Math., Moscow, (1988).Google Scholar
  35. [35]
    S.D. Rothman and A.M. Evans, in: New Models and Numerical Codes for Shock Wave Processes in Condensed Media, AWE Hunting-BRAE, Oxford (1997), pp. 298–301.Google Scholar
  36. [36]
    L.V. A1’tshuler, A.A. Bakanova et al., Himicheskaya Fizika 14 (2–3), pp. 65–67 (1995).Google Scholar
  37. [37]
    R. Latter, J. Chem. Phys. 24 (2) pp. 280–297 (1956).ADSCrossRefGoogle Scholar
  38. [38]
    N.N. Kalitkin, and L.V. Kuz’mina, DokL Acad. Nauk 44 (9), pp. 589–591 (1999).Google Scholar
  39. [39]
    N.N. Kalitkin, and I.A. Govorukhina, Sov. Phys.-Solid State 7(2), pp. 287–292 (1965) [trans. from Fiz. Tverd. Tela 7(2), pp. 355–562 (1965).]Google Scholar
  40. [40]
    E.A. Kuzmenkov, Izvestia Siberian Division of the Russian Acad. Sci. 6, pp. 106–112 (1989).Google Scholar
  41. [41]
    L.V. A1’tshuler, A.A. Bakanova, and R.F. Trunin, Soy. Phys.-JETP 15(1) pp. 6574 (1962) [trans. from Zh. Eksp. Teor. Fiz. 42(1) pp. 91–104 (1962).]Google Scholar
  42. [42]
    P.W. Bridgman, Proc. Am. Acad. Sci. 76 (6), p. 189, (1949).CrossRefGoogle Scholar
  43. [43]
    H.K. Mao, P.M. Bell, J.W. Shaner, and D.J. Steinberg, J. Appl. Phys. 49 (6) pp. 3276–3283 (1978).ADSCrossRefGoogle Scholar
  44. [44]
    L.V. A1’tshuler, S.B. Kormer, A.A. Bakanova, and R.F. Trunin, Soy. Phys. —JETP 11(3), pp. 573–579 (1960). [trans. from Zh. Eksp. Teor. Fiz. 38(3) pp. 790–798 (1960).]Google Scholar
  45. [45]
    W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandrea, N.W. Ashcroft, N.C. Holmes, and G.R. Gathers, Phys. Rev. Letters 60 (14), pp. 1414–1417 (1988).ADSCrossRefGoogle Scholar
  46. [46]
    R.M. More, J.F. Barnes, and R.D. Cowan, Bull. Am. Phys. Soc.1121, p. 1153 (1976).Google Scholar
  47. [47]
    K.S. Holian, Los Alamos National Laboratory Report LA-10160-MS, (1985).Google Scholar
  48. [48]
    D.A. Young, J.K. Wolford, F.J. Rogers, and K.S. Holian, Phys. Lett. A 108 (3), pp. 157–160 (1985).ADSCrossRefGoogle Scholar
  49. [49]
    L.S. Polak (ed.), Essays on Physics and Chemistry of Low-Temperature Plasma, Nauka, Moscow, (1971) p. 241.Google Scholar
  50. [50]
    W. Ebeling, W.-D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Academie -Verlag, Berlin, (1976).Google Scholar
  51. [51]
    V.E. Fortov and I.T. Yakubov, Physics ofNonideal Plasma, United Institute of Chemical Physics and Institute of High Temperatures of USSR Academy of Sciences, Chernogolovka, (1984). (in Russian)Google Scholar
  52. [52]
    N.N. Kalitkin and L.V. Kuz’mina, Preprint No. 16, Keldysh Inst. Appl. Math., Moscow, (1989).Google Scholar
  53. [53]
    J. Holtsmark, Ann. Phys. Leipzig 58, p. 577 (1919).ADSCrossRefGoogle Scholar
  54. [54]
    A.A. Broyles, Phys. Rev. A, 100, pp. 1181–1190 (1955).MATHGoogle Scholar
  55. [55]
    Yu.K. Kurilenkov and V.S. Filinov, High Temperature 18(4), pp. 509–518 (1980). [trans. from Teplofiz. Vys. Temp. 18 (4), pp. 657–667 (1980).Google Scholar
  56. [56]
    I.O. Golosnoy, Mat. Modelirovanie 4 (6), pp. 3–12 (1992).Google Scholar
  57. [57]
    C.A. Iglesias, J.L. Lebowitz, and D. McGowan, Phys. Rev. A 28 (3), pp. 1667–1672 (1983).MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    C.A. Iglesias, H.E. DeWitt, J.L. Lebowitz, D. McGowan, and W.B. Hubbard, Phys. Rev. A, 31 (3), pp. 1698–1702 (1985).ADSCrossRefGoogle Scholar
  59. [59]
    C.A. Iglesias and J.L. Lebowitz, Phys. Rev. A 30 (4), pp. 2001–2004 (1984).ADSCrossRefGoogle Scholar
  60. [60]
    A. Alastuey, C.A. Iglesias, J.L. Lebowitz, and D. Levesque, Phys. Rev. A 30 (5), pp. 2537–2547 (1984).ADSCrossRefGoogle Scholar
  61. [61]
    J.F. Springer, M.A. Pokrant, and F.A. Stevens, Jr., Chem. Phys. 58 (11), pp. 4863–4867 (1973).ADSGoogle Scholar
  62. [62]
    L.D. Landau and E.M. Lifshits, Theoretical Physics, Vol. 3, Quantum Mechanics: Non-relativistic Theory, Nauka, Moscow, (1989).Google Scholar
  63. [63]
    J.W. Dufty, D.B. Boercker, and C.A. Iglesias, Phys. Rev. A 31 (3), pp. 1681–1686 (1985).ADSCrossRefGoogle Scholar
  64. [64]
    L.B. Timan, Zh. Eksp. Teor. Fiz 27 (6), pp. 708–711 (1954).Google Scholar
  65. [65]
    J.P. Hansen, Phys. Rev. A 8 (6), pp. 3096–3109 (1973).ADSCrossRefGoogle Scholar
  66. [66]
    V.G. Sevast’yanenko, Preprint No. 30, Novosibirsk, Inst. Theor. Appl. Mech., (1980).Google Scholar
  67. [67]
    I.O. Golosnoy and N.N. Kalitkin, Preprint No. 73, Keldysh Inst. Appl. Math., Moscow, (1990).Google Scholar
  68. [68]
    V.S. Volokitin, and N.N. Kalitkin, Preprint No. 11, Inst. Math. Model., Moscow, (1991).Google Scholar
  69. [69]
    V.S.Volokitin and N.N. Kalitkin, Mat. Modelirovanie 3 (5), pp. 49–60 (1991).Google Scholar
  70. [70]
    G.A. Koval’skaya and V.G. Sevast’yanenko, in: Properties of Low-Temperature Plasma and Methods of Its Diagnosis, Nauka, Moscow, (1977), pp. 11–37. (in Russian)Google Scholar
  71. [71]
    I.O. Golosnoy, Mat. Modelirovanie 3 (9), pp. 49–54 (1991).Google Scholar
  72. [72]
    V.S. Volokitin, Mat. Modelirovanie 3 (8), pp. 47–52 (1991).Google Scholar
  73. [73]
    N.N. Kalitkin and I.V. Ritus, preprint No. 18, Keldysh Inst. Appl. Math., Moscow, (1987). (in Russian)Google Scholar
  74. [74]
    B.N. Lomakin and V.E. Fortov, Sov. Phys.—JETP 36(1) pp. 48–53 (1973) [trans. from Zh. Eksp. Teor. Fiz. 63(1) pp. 92–103 (1972).]Google Scholar
  75. [75]
    V.A. Sechenov and O.E. Shchekotov, High Temperature 12(3) pp. 562–564 (1974). [trans. from Teplofiz. Vys. Temp. 12(3) pp. 652–654 (1974).]Google Scholar
  76. [76]
    A.V. Bushman B.N. Lomakin, V.A. Sechenov, V.E. Fortov, O.E. Shchekotov, and I.I. Sharipdzhanov, Sov. Phys.—JETP 42(5) pp. 828–831 (1976) [trans. from Zh. Eksp. Teor. Fiz. 69(5) pp. 1624–1633 (1975).]Google Scholar
  77. [77]
    C.F. Hooper, Jr., R.C. Manchini, D.P. Kilcrease, L.A. Woltz, MC. Richardson, D.K. Bradley, and P.A. Jaanimagi, in: High Intensity Laser Matter Interactions 913, Society of Photoptical Instrumentation Engineers, pp. 129–137 (1988).Google Scholar
  78. [78]
    A I. Larkin, Soy. Phys.—JETP 11(6), pp. 1363–1364 (1960) [trans. from Zia Eksp. Teor. Fiz. 38 (6), pp. 1896–1898 (1960).Google Scholar
  79. [79]
    V.S. Volokitin, Mat. Modelirovanie 3 (7), pp. 51–56 (1991).Google Scholar
  80. [80]
    E.N. Avrorin, B.K. Vodolaga, N.P. Voloshin, G.V. Kovalenko, V.F. Kuropatenko, V.A. Simonenko, and B.T. Chemovolyuk, Soy. Phys.—JETP 66(2) pp. 347–354 (1988). [trans. from Zh. Eksp. Teor. Fiz. 93(2) pp. 613–626 (1987).]Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • N. N. Kalitkin
  • L. V. Kuzmina

There are no affiliations available

Personalised recommendations