Abstract

Scientific investigation of shock parameters of metals, and primarily of their shock compressibility, was initially related to the problem of designing nuclear weapons. In the United States, experiments of that kind were started in 1945, and two years later the compressibility of uranium at pressures up to 50 GPa was first measured in Russia. For a long time thereafter work was done to refine the measured position of shock-compression curves (Hugoniots) for materials which had already been studied and to extend the range of pressure investigated. This is because a great many scientific and technical problems are currently solved on the basis of knowledge of shock properties of various materials. These include problems of high-velocity impacts, in particular of spacecraft and meteorite protection, the inner composition of the Earth and of other planets, verification of theoretical models of material behavior under extreme loading conditions, synthesis of novel materials, high pressure chemistry, etc. In 1995, as a result of work done to increase the range of pressure open to investigation, laboratory shock generators driven by high explosives were built and used in Russia to generate pressures higher than 2.5 TPa in heavy metals. Those pressures were approximately two-fold higher than those produced earlier in our country and five-fold higher (for the same materials) than pressures produced in research centers of other countries. Even higher pressures, up to 10 TPa, were generated in underground nuclear tests. Both these values were measured by the so-called absolute investigation technique. When this technique is used, the accuracy with which kinematic and thermodynamic parameters of material compression are determined depends only on the accuracy of the experiment itself and not on the validity of additional assumptions.

Keywords

Shock Wave Detonation Wave Kinematic Parameter Nuclear Explosion High Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.V. Al’tshuler, KK. Krupnikov, B.N. Ledenev, V.I. Zhuchikhin, and M.I. Brazhnik, Soy. Phys.-JETP 34 pp. 606–614 (1958). [trans. from Zh. Eksp. Teor. Fiz. 34(4), pp. 874–885 (1958).]Google Scholar
  2. [2]
    L. V. Al’tshuler, K.K. Krupnikov, and M.I. Brazhnik, Sov. Phys.-JETP 34 pp. 614–619 (1958). [trans. from Zh. Eksp. Teor. Fiz. 34(4), pp. 886–893 (1958).]Google Scholar
  3. [3]
    V.A. Bugaeva, A.A. Evstigneev, and R.F. Trunin, High Temperature 34(5), pp. 674–680 (1996). [trans. from Teplofiz. Vys. Temp. 34(5), pp. 684–690 (1996).]Google Scholar
  4. [4]
    L. V. Al’tshuler, M.N. Pavlovsky, L. V. Kuleshova, and G. V. Simakov, Sov. Phys.- Solid State 5 pp. 203–211(1963). [trans. fromFiz. Tverd. Tela. 5(1), p. 279 (1963).]Google Scholar
  5. [5]
    L. V. Al’tshuler, S.B. Kormer, A.A. Bakanova, and R.F. Trunin, Sov. Phys.-JETP 11,pp. 573–579 (1960). [trans. from Zh. Eksp. Teor. Fiz. 38(3), p. 790 (1960).]Google Scholar
  6. [6]
    L. V. Al’tshuler, R.F. Trunin, K.K. Krupnikov, and N. V. Panov, Sov. Phys.-Usp. 35(5), pp. 539–544 (1996). [Trans. from: Usp. Fiz. Nauk 166(5), pp. 575 (1996).]Google Scholar
  7. [7]
    R.F. Trunin, Usp. Fiz Nauk 164(11), pp. 1215–1237 (1994).Google Scholar
  8. [8]
    L.P. Volkov, N.P. Voloshin, A.S. Vladimirov et al., Soy. Phys.-JETP Lett. 31(11), pp. 588–592 (1980). [trans. from: Pis ‘ma Zh. Eksp. Teor. Fiz. 31(11), p. 623 ( 1980 ]Google Scholar
  9. [9]
    V.A. Simonenko, N.P. Voloshin, A.S. Vladimirov, A.P. Nagibin, V.N. Nogin, V.A. Popov, V.A. Vasilenko, and Yu. A. Shoidin, Soy. Phys.-JETP 61(4), p. 869, (1985). [trans. from Zh. Eksp. Teor. Fiz. 88(4), pp. 1452–1465 (1985).]108 R.F. TruninGoogle Scholar
  10. [10]
    L.V. AI’tshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, and B.S. Chekin, J. Appl. Mech. Tech. Phys. 22(2) pp. 145–169 (1981). [trans. from Prikl. Mekh. Tekh. Fiz. 2 pp. 3–34 (1981).]Google Scholar
  11. [11]
    L.V. A1’tshuler and A.A. Bakanova, Soy. Phys.-Usp. 11(5) pp. 678–689 (1968). [trans. from Usp. Fiz. Nauk 96(2) pp. 193–215 (1968).]Google Scholar
  12. [12]
    N.N. Kalitkin and L.V. Kuz’mina, Ins. ofAppL Math. Akad. Nauk SSSR 351975, 73 p. Preprint.Google Scholar
  13. [13]
    V.P. Kopishev, ChisL Met. Mekh. Sploshn. Sredi. 8 (6), pp. 54–67 (1977).Google Scholar
  14. [14]
    R.F. Trunin, N.V. Panov, and A.B. Medvedev, Soy. Phys.-JETP Letters 62(7) pp. 591–594 (1995). [trans. from Pis ‘ma Zh. Eksp. Teor. Fiz. 62(7) p. 572–575 (1995).]Google Scholar
  15. [15]
    R.F. Trunin, Izvestia Russian Academy of Sciences Physics of the Earth 22(2)pp. 22–28 (1986). [trans. from: Izy. Akad. Nauk SSSR, Ser. Fiz. Zemli. 2 p. 26.]Google Scholar
  16. [16]
    C.E. Ragan, M.G. Silbert, and B.C. Diven, J. Appl. Phys. 48 (7) pp. 2860–2870 (1977).ADSCrossRefGoogle Scholar
  17. [17]
    A.C. Mitchell, W.J. Nellis, et.al., J. Appl. Phys. 69 (5) pp. 2981–2986, (1991).ADSCrossRefGoogle Scholar
  18. [18]
    R.F. Trunin, M A Podurets, G.V. Simakov, L.V. Popov, and A.G. Sevast’yanov High Temperature 32(5) pp. 736–737 (1994). [trans. from Teplofiz. Vys. Temp. 32(5) pp. 786–788 (1994).]Google Scholar
  19. [19]
    S.P. Marsh (ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley, (1980).Google Scholar
  20. [20]
    R.F. Trunin, L.A. lI’kaeva, M.A. Podurets, L.V. Popov, B.V. Pechenkin, L.V. Prokhorov, A.G. Sevast’yanov, and V.V. Khrustalev High Temperature 32(5) pp. 647–649 (1994). [trans. from Teplofiz. Vys. Temp. 32(5) pp. 692–695 (1994).]Google Scholar
  21. [21]
    Ye.N. Avrorin, B.K. Vogolaga, N.P. Voloshin, G.V. Kovalenko,V.F. Kuropatenko, V.A. Simonenko, and B.T. Chemovolyuk, Soy. Phys.-JETP 93(2) pp. 347–354 (1987). [trans. from Zh. Eksp. Teor. Fiz. 93(2) p. 613–626 (1987).]Google Scholar
  22. [22]
    L.V. A1’tshuler, B.N. Moiseev, L.V. Popov, G.V. Simakov, and R.F. Trunin Saw. Phys-JETP 27 pp. 420-.422 (1968). [trans. from Zh. Eksp. Teor. Fiz. 54(3) p. 785789 (1968).] Google Scholar
  23. [23]
    R.F.Trunin, M.A. Podurets, G.V. Simakov, L.V. Popov, and B.N. Moiseev,Soy. Phys.-JETP 35 pp. 550–552 (1972). [trans. from: Zh. Eksp. Teor. Fiz. 62(3) pp. 1043–1048 (1972).] Google Scholar
  24. [24]
    A.F. Nikiforov, V.G. Novikov, and V.B. Uvarov,Mathematical Modeling. Physical and Chemical Substance PropertiesNauka, Moscow, 1989. 162 p.Google Scholar
  25. [25]
    G.V. Sin’ko, High Temperature 21(6) pp. 783–793 (1983). [trans. from Teplofiz. Vys. Temp. 2(6) pp. 1041–1052 (1983).] Google Scholar
  26. [26]
    R.F. Trunin, G.V. Simakov, M.A. Podurets, B.N. Moiseyev, and L.V. Popov, Izw. Adad. Sci. USSR Phys. Solid Earth (1)pp. 8–12 (1971). [trans. from Izw. Akad. NaukSSSRFiz. Zemli (1) pp. 13–20 (1971).] Google Scholar
  27. [27]
    A.B. Medvedev, VoprosyAt. Nauki Tekh. Ser. Teor. Prikl. Fiz. 1, pp. 12–19 (1992).Google Scholar
  28. [28]
    I.Sh. Model’, A.T. Narozhnyi, A.I. Kharchenko, S.A. Kholin, and V.V. Khrustalev, Soy. Phys.-JETP Letters 41(6) pp. 332–334 (1985). [trans. from: Pis ‘ma Zh. Eksp. Teor. Fiz. 41 pp. 270–272 (1985).].Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • R. F. Trunin

There are no affiliations available

Personalised recommendations