“Ultra”-Fast Fracture Strength of Advanced Structural Ceramics at Elevated Temperatures: An Approach to High-Temperature ‘Inert’ Strength

  • Sung R. Choi
  • John P. Gyekenyesi
Chapter

Abstract

The determination of “ultra”-fast fracture strengths of a total of 17 advanced ceramics at elevated temperatures has been made by using constant stress-rate testing in flexure with a series of “ultra”-fast test rates. The test materials included two aluminas, eleven monolithic silicon nitrides, two SiC whisker-reinforced composite silicon nitrides, and two silicon carbides. Of the 17 ceramic materials tested, 15 advanced ceramics exhibited elevated-temperature strengths that approached (within 90%) their respective room-temperature strengths at an “ultra”-fast test rate of 3.3 × 104 MPa/s. This indicates that slow crack growth responsible for elevated-temperature failure can be eliminated or minimized by using a sufficiently fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature “inert” strength behavior of advanced ceramics. The elevated-temperature, “inert” strength of a ceramic material could be determined by using test rates equal to or greater than the “ultra”-fast test rate of 3.3 × 104 MPa/s

Keywords

Fracture Toughness Silicon Nitride Test Rate Fracture Strength Stress Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange, High-Temperature Strength Behavior of Hot-Pressed Si3N4: Evidence for Subcritical Crack Growth, J Am. Ceram. Soc., 57, 84–87 (1974).CrossRefGoogle Scholar
  2. 2.
    G. Evans and S. M. Wiederhorn, Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperatures, J. Mater. Sci., 9, 270–278 (1974).CrossRefGoogle Scholar
  3. 3.
    R. Kossowsky, D. G. Miller, and E. S. Diaz, Tensile and Creep Strengths of Hot-Pressed Si3N4, J. Mater. Sci., 10, (1975), 983–997 (1978).Google Scholar
  4. 4.
    J. E. Weston and P. L. Pratt, Crystallization of Grain Boundary Phases in Hot-Pressed Silicon Nitride Materials, J. Mater. Sci., 13, 2147–2156 (1978).CrossRefGoogle Scholar
  5. 5.
    N. J. Tighe, The Structure of Slow Crack Growth Interfaces in Silicon Nitride, J. Mater. Sci., 13, 1455–1463 (1978).CrossRefGoogle Scholar
  6. 6.
    K. D. McHenry and R. E. Tressler, Fracture Toughness and High-Temperature Slow Crack Growth in SiC, J. Am. Ceram. Soc., 63, 152–156 (1980).CrossRefGoogle Scholar
  7. 7.
    R. L. Tsai and R. Raj, The Role of Grain-Boundary Sliding in Fracture of Hot-Pressed Si3N4 at High Temperatures, J Am. Ceram. Soc., 63, 513–517 (1980).CrossRefGoogle Scholar
  8. 8.
    K. Jakus, T. Service, and J. E. Ritter, High-Temperature Fatigue Behavior of Polycrystalline Alumina, J. Am. Ceram. Soc., 63, 4–7 (1980).CrossRefGoogle Scholar
  9. 9.
    R. K. Govila, Strength of Slip-Cast, Sintered Silicon Nitride, J Am. Ceram. Soc., 73, 17441751 (1990).Google Scholar
  10. 10.
    G. D. Quinn, Fracture Mechanism Maps for Advanced Structural Ceramics Part I: Methodology and Hot-Pressed Silicon Nitride Results, J. Mater. Sci., 25, 4361–4376 (1990).CrossRefGoogle Scholar
  11. 11.
    A. G. Evans and -F. F. Lange, Crack Propagation and Fracture in Silicon Carbide, J Mater. Sci., 10, 1659–1664 (1975).CrossRefGoogle Scholar
  12. 12.
    D. G. Miller, C. A. Anderson, S. C. Singhal, F. F. Lange, E. S. Diaz, and R Kossowsky, Brittle Materials Design, High Temperature Gas Turbine Material Technology, AMMRC CTR 76–32, Army Materials and Mechanics Research Center, Watertown, MA (1976).Google Scholar
  13. 13.
    R. K. Govila, Ceramic Life Prediction Parameters, AMMRC TR 80–18, Army Materials and Mechanics Research Center, Watertown, MA (1980).Google Scholar
  14. 14.
    P. K. Khandelwal, J. Chang, and P. W. Heitman, Slow Crack Growth in Silicon Nitride, in: Fracture Mechanics of Ceramics, Vol. 8, R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Press, NY, 351–362 (1986).Google Scholar
  15. 15.
    M. H. Rawlins, T. A. Nolan, L. F. Allard, and V. J. Tennery, Dynamic and Static Fatigue of Sintered Silicon Nitride: II, Microstructure and Failure Analysis, J. Am. Ceram. Soc., 72, 1338–1342 (1989).CrossRefGoogle Scholar
  16. 16.
    W. Braue, J. Goring, and G. Ziegler, Correlation of Slow Crack Growth and Microstructure in HIP-SiC, in: Ceramic Materials & Components for Engines, V. J. Tennery, ed., The American Ceramic Society, Westerville, OH, 817–830 (1989).Google Scholar
  17. 17.
    Y. Tajima, K. Urashima, M. Watanabe, and Y. Matsuo, Static, Cyclic and Dynamic Fatigue Behavior of Silicon Nitride, in: Ceramic Materials & Components for Engines, V. J. Tennery, ed., The American Ceramic Society, Westerville, OH, 719–728 (1989).Google Scholar
  18. 18.
    N. L. Hecht, D. E. McCullum, and G. A. Graves, Investigation of Selected Si3Na and SiC Ceramics, in: Ceramic Materials & Components for Engines, V. J. Tennery, ed., The American Ceramic Society, Westerville, OH, 806–816 (1989).Google Scholar
  19. 19.
    N. L. Hecht, in: Ceramic Technology Project, Semiannual Progress Report for October 1992 Through March 1993, ORNL/TM-12428, Oak Ridge National Laboratory, Oak Ridge, TN, 329–342 (1993).Google Scholar
  20. 20.
    S. R. Choi and J. A. Salem, ‘Inert’ Strength of Silicon Nitride Ceramics at Elevated Temperatures, Ceram. Eng. Sci. Proc., 17, 454–461 (1996).CrossRefGoogle Scholar
  21. 21.
    S. R. Choi and J. A. Salem, Ultra-Fast Fracture Strength of Advanced Ceramics at Elevated Temperatures, Mat. Sci. Eng. A242, 129–136 (1998).Google Scholar
  22. 22.
    S. R. Choi and J. P. Gyekenyesi, Eevated-Temperature, ‘Ultra’-Fast Fracture Strength Behavior of Advanced Structural Ceramics, in: Ceramic Materials & Components for Engines, K. Niihara et al.,ed., Technoplaza Co., Japan, 689–694 (1998).Google Scholar
  23. 23.
    S. R. Choi and J. P. Gyekenyesi, Elevated-Temperature, ‘Ultra’-Fast Fracture Strength of Advanced Ceramics: An Approach to the Concept of Elevated-Temperature `Inert’ Strength, Trans. of the AWE, Journal of Eng. for Gas Turbines and Power, 121, 18–24 (1999).Google Scholar
  24. 24.
    S. M. Wiederhorn, Subcritical Crack Growth in Ceramics, in: Fracture Mechanics of Ceramics, Vol. 2, R. C. Bradt, D. P. H. Hasselman, and F. F Lange, eds., Plenum Publishing Co., NY, 613–646 (1978).Google Scholar
  25. 25.
    J. E. Ritter, Engineering Design and Fatigue Failure of Brittle Materials, in: Fracture Mechanics of Ceramics, Vol. 4, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Publishing Co., NY, 661–686 (1978).Google Scholar
  26. 26.
    ASTM C 1368, Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature, Annual Book of ASTM Standards, Vol. 15. 01, American Society for Testing and Materials, Philadelphia, PA (1998).Google Scholar
  27. 27.
    ASTM C 1259, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration, Annual Book of ASTM Standards, Vol. 15. 01, American Society for Testing and Materials, Philadelphia, PA (1997).Google Scholar
  28. 28.
    ASTM C 1421, Standard Test Method for the Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, Annual Book of ASTM Standards, Vol. 15. 01, American Society for Testing and Materials, Philadelphia, PA (2000).Google Scholar
  29. 29.
    J. L. Henshall, D. J. Rowcliffe, and J. W. Edington, The Fracture Toughness and Delayed Failure Fracture of Hot-Pressed Silicon Nitride, in: Special Ceramics 6, The British Ceramic Research Association, UK 185–198 (1975).Google Scholar
  30. 30.
    A. A.Wereszczak, M. K. Ferber, R. R. Sanders, M. G. Jenkins, and P. Khandelwal, Fracture Toughness (Kic & Wwof) of Hipped Si3Na at Elevated Temperatures, Ceram. Eng. Sci. Proc., 14 [7–8], 101–112 (1993).Google Scholar
  31. 31.
    R. Moussa, J. L. Chermant, and F. Osterstock, Room and High Temperature Fracture of Hot Pressed Silicon Carbide, Proc. Brit. Ceram. Soc., 32, 261–276 (1982).CrossRefGoogle Scholar
  32. 32.
    A. Ghosh, M. G. Jenkins, M. K. Ferber, J. Peussa, and J. A. Salem, Elevated-Temperature Fracture Resistance of Monolithic and Composite Ceramics Using Chevron-Notched Bend Tests, in: Fracture Mechanics of Ceramics, Vol. 10, R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai, and V. Ya. Shevchenko, eds., Plenum Press, NY 89–107 (1992).Google Scholar
  33. 33.
    S. Sakaguchi, N. Murayama, Y. Kodama, and F. Wakai, Fracture Toughness Measurement by Indentation Fracture Method at Elevated Temperature, ibid, 509–521 (1992).Google Scholar
  34. 34.
    S. R. Choi and J. A. Salem, Strength, Toughness and R-Curve Behavior of SiC Whisker-Reinforced Composite Si3Na with Reference to Monolithic Si3N4, J. Mater. Sci., 27 1491–1498 (1992).Google Scholar
  35. 35.
    N. Kohler, Y. Ikuhara, H. Awaji, and K. Funatani, High Temperature Fracture Mechanism of Gas-Pressure Sintered Silicon Nitride, in: Fracture Mechanics of Ceramics, Vol. 10, R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai, and V. Ya. Shevchenko, ed., Plenum Press, NY, 367–377 (1992).Google Scholar
  36. 36.
    J. B. Wachtman and D. G. Lam, Young’s Modulus of Various Refractory Materials as a Function of Temperature, J. Am. Ceram. Soc., 42, 254–260 (1959).CrossRefGoogle Scholar
  37. 37.
    L. H. Van Vlack, Physical Ceramics, Addison-Wesley Publishing Company, Reading, MA, 117–118 (1964).Google Scholar
  38. 38.
    Kyocera Technical Catalogue, Kyocera Corp., Kyoto, Japan (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Sung R. Choi
    • 1
  • John P. Gyekenyesi
    • 2
  1. 1.Cleveland State UniversityClevelandUSA
  2. 2.NASA Glenn Research CenterClevelandUSA

Personalised recommendations