Fluid, Electrolyte, and Acid-Base Disorders

  • Joseph Hobbs

Abstract

Fluid, electrolyte, and acid-base disorders are frequently associated with problems encountered in family medicine. The rapid detection and treatment of these disorders is important, as they affect the quantity and quality of vital organ profusion. These disorders can be seen in all age groups, but the very young, the very old, and those with chronic diseases are particularly vulnerable to serious complications because of inadequate or immature mechanisms of compensation and prevention.1

Keywords

Metabolic Acidosis Diabetic Ketoacidosis Plasma Osmolality Metabolic Alkalosis Volume Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hobbs J. Acid-base disorders. Postgrad Med 1988;83(2):91–8.Google Scholar
  2. 2.
    Hobbs J. Acid-base, fluid and electrolyte disorders. In: Rakel RE, editor. Textbook of family practice. 4th ed. Philadelphia: Saunders, 1990.Google Scholar
  3. 3.
    Disorders of water and salt metabolism. In: Porush JG, Faugert PF, editors. Renal disease in the aged. Boston: Little, Brown, 1991.Google Scholar
  4. 4.
    Disorders of potassium metabolism. In: Porush JG, Faugert PF, editors. Renal disease in the aged. Boston: Little, Brown, 1991.Google Scholar
  5. 5.
    Acid-base disorders. In: Porush JG, Faugert PF, editors. Renal disease in the aged. Boston: Little, Brown, 1991.Google Scholar
  6. 6.
    Keating JP, Schears GJ, Dodge PR. Oral water intoxication in infants: an American epidemic. Am J Dis Child 1991;145:985–90.PubMedGoogle Scholar
  7. 7.
    Mickel HS, Oliver CN, Starke-Reed PE. Protein oxidation and myelinolysis occur in brain following rapid correction of hyponatremia. Biochem Biophys Res Commun 1990;172:92–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Wattad A, Chiang ML, Hill LL. Hyponatremia in hospitalized children. Clin Pediatr (Phila) 1992;31(3):153–7.CrossRefGoogle Scholar
  9. 9.
    Oh MS, Carroll HJ. Disorders of sodium metabolism: hypernatremia and hyponatremia. Crit Care Med 1992;20:94–103.PubMedCrossRefGoogle Scholar
  10. 10.
    Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P. The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Sci 1991;49:677–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson W, Youl B, Mackay IR. Acute theophylline intoxication. Ann Emerg Med 1991;20:1143–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson OK, Gudbrandsson T, Jamerson K. Metabolic adverse effects of thiazide diuretics: the importance of normokalemia. J Intern Med Suppl 1991;735:89–96.Google Scholar
  13. 13.
    Kleinfeld M, Casimir M, Borra S. Hyponatremia as observed in a chronic disease facility. J Am Geriatr Soc 1979;27:156–61.PubMedGoogle Scholar
  14. 14.
    Katz M. Hyperglycemia-induced hyponatremia: calculation of expected serum sodium depression. N Engl J Med 1973;289:843–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Friedman E, Shadel M, Halkin H, Farfel Z. Thiazide induced hyponatremia: reproducibility by single dose rechallenge and an analysis of pathogenesis. Ann Intern Med 1989;110:24–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Sonnenblick M, Algur N, Rosin A. Thiazide induced hyponatremia and vasopressin release. Ann Intern Med 1989;110:751.PubMedCrossRefGoogle Scholar
  17. 17.
    Packer M, Medina N, Yushak M. Correction of dilutional hyponatremia in severe chronic heart failure by converting enzyme inhibition. Ann Intern Med 1984;100:782–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Ayus JC. Diuretic-induced hyponatremia. Arch Intern Med 1986; 146:1295–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Norenberg MD. Treatment of hyponatremia: the case for a more conservative approach. Dubois GD, Arieff AI. Treatment of hyponatremia: the case for rapid correction. In: Narins RG, editor. Controversies in nephrology and hypertension. New York: Churchill-Livingstone, 1984.Google Scholar
  20. 20.
    Ayus JC, Krothapalli RK, Arieff AI. Changing concepts in treatment of severe symptomatic hyponatremia: rapid correction and possible relation to central pontine myelinolysis. Am J Med 1985;78:897–902.PubMedCrossRefGoogle Scholar
  21. 21.
    Rose BD. Hypoosmolal states-hyponatremia. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  22. 22.
    Ashouri OS. Severe diuretic-induced hyponatremia in the elderly. Arch Intern Med 1986;146:1355.PubMedCrossRefGoogle Scholar
  23. 23.
    Sterns RH, Riggs JE, Schochet SS Jr. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 1986;314:1535.PubMedCrossRefGoogle Scholar
  24. 24.
    Narins RG. Therapy of hyponatremia: does haste make waste? N Engl J Med 1986;314:1573.PubMedCrossRefGoogle Scholar
  25. 25.
    Moder RG, Hurley DL. Fatal hypernatremia from exogenous salt intake: report of a case and review of the literature. Mayo Clin Proc 1990;65:1587–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Snyder NA, Feigal DW, Arieff AI. Hypernatremia in elderly patients: a heterogeneous, morbid and iatrogenic entity. Ann Intern Med 1987;107:309–19.PubMedCrossRefGoogle Scholar
  27. 27.
    Rose BD. Hyperosmolal states-hypernatremia. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  28. 28.
    Phillips PA, Rolls BJ, Ledingham GG, et al. Reduced thirst after water deprivation in healthy elderly men. N Engl J Med 1984;311:753–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Albrink MJ, Hald PM, Man EB, Peters JP. The displacement of serum water by the lipids of hyperlipemic serum: a new method for the rapid determination of serum water. J Clin Invest 1955;34: 1481.Google Scholar
  30. 30.
    Tarail R, Buchwald KW, Holland JF, Selawry OS. Misleading reductions of serum sodium and chloride: association with hyperproteinemia in patients with multiple myeloma. Proc Soc Exp Biol Med 1962;110:145.PubMedGoogle Scholar
  31. 31.
    Worth HGJ. Plasma sodium concentration: bearer of false prophecies? BMJ 1983;287:567.PubMedCrossRefGoogle Scholar
  32. 32.
    Oh MS, Carroll HJ, Uribarri J. Mechanisms of normochloremic and hyperchloremic acidosis in diabetic ketoacidosis. Nephron 1990;54:1–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Stackpoole PW. Lactic acidosis: the case against bicarbonate therapy. Ann Intern Med 1986;105:276–9.CrossRefGoogle Scholar
  34. 34.
    Narins RG, Cohen JJ. Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med 1987;106:615–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Cooper JD, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. Ann Intern Med 1990;112:492–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach. Medicine (Baltimore) 1980;59:161–87.Google Scholar
  37. 37.
    Oster JR, Perez GO, Materson BJ. Use of the anion gap in clinical medicine. South Med J 1988;81:225–37.CrossRefGoogle Scholar
  38. 38.
    Saxton CR, Seldin DW. Clinical interpretation of laboratory values. In: Kokko JP, Tannen RL, editors. Fluids and electrolytes. Philadelphia: Saunders, 1986.Google Scholar
  39. 39.
    McKeown JW. Disorders of total body sodium. In: Kokko JP, Tannen RL, editors. Fluids and electrolytes. Philadelphia: Saunders, 1986.Google Scholar
  40. 40.
    Humes HD. Disorders of water metabolism. In: Kokko JP, Tannen RL, editors. Fluids and electrolytes. Philadelphia: Saunders, 1986.Google Scholar
  41. 41.
    Tannen RL. Potassium disorders. In: Kokko JP, Tannen RL, editors Fluids and electrolytes. Philadelphia: Saunders, 1986.Google Scholar
  42. 42.
    Rose BD. Meaning and application of urine chemistries. In: Rose BD, editor. Clinical physiology of acid-base and electrolyte disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  43. 43.
    Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 1981;71:456.PubMedCrossRefGoogle Scholar
  44. 44.
    Emmett M, Narins RG. Clinical use of the anion gap. Medicine (Baltimore) 1977;56:38.Google Scholar
  45. 45.
    Gabow PA, Kaehny WD, Fennessey PV, et al. Diagnostic importance of an increased anion gap. N Engl J Med 1980;303:854.PubMedCrossRefGoogle Scholar
  46. 46.
    Narins RG, Jones ER, Stom MC, et al. Diagnostic strategies in disorders of fluid, electrolyte and acid-base homeostasis. Am J Med 1982;72:496–504.PubMedCrossRefGoogle Scholar
  47. 47.
    Rose BD. Edematous states. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  48. 48.
    Rose BD. Introduction to simple and mixed acid-base disorders. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  49. 49.
    Oh MS, Carroll HJ, Goldstein DA, Fein IA. Hyperchloremic acidosis during the recovery phase of diabetic ketosis. Ann Intern Med 1978;89:925–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Rose BD. Respiratory acidosis. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  51. 51.
    Giebisch GE, Berger L, Pitts RF. The extrarenal response to acute acid-base disturbances of respiratory origin. J Clin Invest 1955;34:231–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Rose BD. Respiratory alkalosis. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  53. 53.
    Rose BD. Hyperosmolal states-hyperglycemia. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  54. 54.
    Rose BD. Hypokalemia. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGrawHill, 1989.Google Scholar
  55. 55.
    Rose BD. Hyperkalemia. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGrawHill, 1989.Google Scholar
  56. 56.
    Rose BD. Metabolic alkalosis. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGraw-Hill, 1989.Google Scholar
  57. 57.
    Jacobson HR, Seldin DW. On the generation, maintenance, and correction of metabolic alkalosis. Am J Physiol 1983; 245:F425.Google Scholar
  58. 58.
    Metabolic acidosis. In: Rose BD, editor. Clinical physiology of acid-base and electrolytes disorders. 3rd ed. New York: McGrawHill, 1989.Google Scholar
  59. 59.
    Foster DW, McGarry JD. The metabolic derangements and treatment of diabetic ketoacidosis. N Engl J Med 1983;309:159–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Joseph Hobbs

There are no affiliations available

Personalised recommendations