Electron Correlation and Plutonium Phase Diagrams

  • A. C. Lawson
  • Joyce A. Roberts
  • Barbara Martinez
  • James W. RichardsonJr
Chapter

Abstract

Phase diagrams of plutonium metal are astonishingly complicated. The main feature is a sequence of crystallographically complex phases. Temperature, pressure and alloying shift the stability of these phases rapidly, so that pressure and alloy phase diagrams are also complicated. Another feature of the plutonium phase diagrams is the anomalously low melting point. How these two features, crystallographic complexity and low melting point, work to determine complicated phase diagrams is shown in Fig. 1. This figure, which is a composite of the relevant binary diagrams, shows that crystallographic complexity and low melting point are nearly exactly coincident. Such behavior is unique to the light actinides. It is natural to seek the source of this behavior in the collective properties of the 5f electrons, and in this paper we will trace some of the paths we are following in this search.

Keywords

Phase Diagram Alloy Phase Diagram Phonon Spectrum Diffuse Scattering Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baskes, M. 1., 2000, Atomistic model of plutonium, Phys. Rev. B. 62: 15532.Google Scholar
  2. Boring, A. Michael and Smith, James L., 2000, Plutonium condensed matter physics — a survey of theory and experiment, in Challenges In Plutonium Science, Necia Grant Cooper, ed., Los Alamos Science, No. 26, pp. 90 – 127; http://www.lanl.gov/extemal/science/lascience/.Google Scholar
  3. Conradson, Steven D., 2000, Where Is the Gallium? — Searching the plutonium lattice with XAFS, in Challenges in Plutonium Science, op. cit., pp. 356–363.Google Scholar
  4. Dmitrov, D. A., Louca, D., and Röder, H., 1999, Phonons from neutron powder diffraction, Phys. Rev. B 60: 6204.CrossRefGoogle Scholar
  5. Egami, T., 1998, PDF analysis applied to crystalline materials, in Local Structure from Diffraction, S. L. J. Billinge and M. F. Thorpe, eds, Plenum, New York, pp. 1–21.Google Scholar
  6. Elliott, R. O, 1970, unpublished.Google Scholar
  7. Grimvall, G., 1999, Thermophysical Properties of Materials, revised edition, Elsevier, Amsterdam, p. 89.Google Scholar
  8. Hecker, Siegfried S. and Timofeeva, Lidia F., 2000, A tale of two diagrams, in Challenges in Plutonium Science, op. cit., pp. 244–251.Google Scholar
  9. Hecker, Siegfried S., 2000, Plutonium and its alloys — from atoms to microstructure, in Challenges in Plutonium Science, op. cit., pp. 290–335.Google Scholar
  10. Holden, A. N., 1958, Physical Metallurgy of Uranium, Addison-Wesley, Reading MA, p 47.Google Scholar
  11. Kaufman, Larry and Bernstein, Harold, 1970, Computer Calculations of Phase Diagrams, Academic Press, New York, pp. 16–26.Google Scholar
  12. Kittel, Charles, 1996, Introduction to Solid State Physics, 7h Edition, New York, John Wiley and Sons, p. 91.Google Scholar
  13. Kmetko, E. A., and Hill, H. H., 1976, Anomalous melting of f-electron metals (with attention to Pu), J. Phys. F. 6: 1025.ADSCrossRefGoogle Scholar
  14. Kwei, G. H., Louca, D., Billinge, S. J. L. and Rosenfeld, H. D., 1998, Recent local structure studies: metallic alloys, superconductors and proteins, in: Local Structure from Diffraction, op. cit., pp. 323–336.Google Scholar
  15. Lashley, Jason C., Blau, Michael S., and Moment, Roger L, 2000, Preparing Single Crystals of GalliumStabilized Plutonium, in Challenges in Plutonium Science, op. cit., pp. 226–232.Google Scholar
  16. Lawson, A. C., Cort, B., Goldstone, J. A., Wozniak, D., Hitterman, R. L. and Richardson, J. W., 1988, Diffraction studies of plutonium metal, IPNS Progress Report 1986–1988, Argonne National Laboratory, p. 50.Google Scholar
  17. Lawson, A. C., Goldstone, J. A., Vaninaetti, J., Eash, D., Cort, B., Hitteman, R., and Faber, J., 1990, Neutron diffraction study of S’ and e-plutonium, IPNS Progress Report 1988–1990, Argonne National Laboratory, p 28.Google Scholar
  18. Lawson, A. C.. Goldstone. J. A.. Cort. B. and Diebolt. L.. 1992. Debye-Waller factors of a-plutonium metal.Google Scholar
  19. LANSCE Experiment Reports — 1991 Run Cycle. Los Alamos National Laboratory, LA-12407-PR, p 33.Google Scholar
  20. Lawson. A. C., Goldstone. J. A.. Cort. B. and Von Dreele. R. B.. 1993. Debye-Waller Factors of a-plutonium.Google Scholar
  21. LANSCE Experiment Reports — 1992 Run Cycle. Los Alamos National Laboratory, LA-12647-PR. p 46.Google Scholar
  22. Lawson. A. C., Goldstone. J. A.. Cort, B., Sheldon. R. I. and Foltyn. E. M.. 1994, Debye-Waller factors of thelight actinide elements. in: Actinide Processing: Methods and Materials. B. Mishra and W. A. Averill. eds.. TMS. Warrendale PA. pp. 31–43.Google Scholar
  23. Lawson, A., C.. Goldstone. J.. A.. Cont. Martinez. R.. J., Vigil. F.. A.. Zocco, T. G.. Richardson, J. W.. Jr.. and Mueller. M. H.. 1996. Structure of (-phase Plutonium-Uranium. Acta Cryst. B 52: 32.Google Scholar
  24. Lawson. A. C.. Martinez. B., Roberts. J. A.. Bennett. B. 1.. and Richardson. J. W.. Jr.. 2000a. Melting of the light actinides. Phil. Mag. B 80: 53.Google Scholar
  25. Lawson. A. C., Martinez. B.. Von Dreele, R. B., Roberts. J. A.. Sheldon, R. I. and Richardson. J. W., Jr., 2000b. Vibrational order in Puo9sGaoO2. Phil. Mag. B 80: 1169.Google Scholar
  26. Lawson, Andrew C.. Martinez. Barbara, Roberts Joyce A.. Richardson, James W., Jr., and Bennett, Bard I., 2000c, Atomic vibrations and melting in plutonium, in Challenges in Plutonium Science, op. cit.. pp. 190–201.Google Scholar
  27. Lawson, A. C.. 2001, An improved Lindemann melting rule, Phil Mag B 81: 255.ADSGoogle Scholar
  28. Ledbetter, H. M. and Moment. R. L.. 1976. Elastic properties of face-centered-cubic plutonium, Acta Met. 24: 891.CrossRefGoogle Scholar
  29. Lee, J. A., Mendelssohn. K.. and Sutcliffe, P. W., 1970, Specific heats of plutonium and neptunium, Proc. Roy. Soc. Lond. A. 317: 303.ADSCrossRefGoogle Scholar
  30. Liptai, R. G.. and Friddle, R. J., 1966, The phase diagram of plutonium at pressures up to 75 kbar, J. Less-Common Metals 10: 292.CrossRefGoogle Scholar
  31. Lisher, E., J.. 1976, The Debye-Waller factors of lead from 296 to 550K, Acta Cryst. A 32: 506.Google Scholar
  32. I.ovesey, S. W.. 1984, Theory of Neutron Scattering from Condensed Matter, Vol. 1, Oxford University Press, Oxford. pp. 112–113.Google Scholar
  33. Manley, M. E., Fultz, B., McQueeney, R. J., Brown, C. M., Hults, W. L. Smith, J. L., Thoma, D. J., Osborn, R and Robertson, J. L.. 2001, Large Harmonic Softening of the Phonon Density of States of Uranium, Phys. Rev. Lett. 86: 3076.ADSCrossRefGoogle Scholar
  34. Manley, Michael E., 2000. Vibrational softening in a-uranium, in Challenges in Plutonium Science, op. cit., pp. 202–207.Google Scholar
  35. McQueeney, R. J., 1998, Dynamic radial distribution function from inelastic neutron scattering, Phys. Rev. B 57: 10560.CrossRefGoogle Scholar
  36. Pankratz, L. B., 1982, Thermodynamic Properties of Elements and Oxides, U.S. Dept. of the Interior, Bureau of Mines, Washington, p. 294.Google Scholar
  37. Reichardt, W., and Pintschovius, L.. 2001, Influence of phonons of the pair distribution function deduced from neutron powder diffraction, Phys. Rev. B 63: 174–302.Google Scholar
  38. Sandenaw, T. A., 1960, Heat capacity, thermal expansion and electrical resistivity of an 8 alo aluminum-plutonium (delta-phase stabilized) alloy below 300K, J. Phys. Chem. Solids 16: 329.ADSCrossRefGoogle Scholar
  39. Smith, J. L., and Kmetko, E. A., 1983, Magnetism or bonding: a nearly periodic table of transition elements, J. Less-Common Metals 90: 83.CrossRefGoogle Scholar
  40. Söderlind, Per, Eriksson, Olle, Johannson, Börje, Willis, J. M. and Boring, A.M. 1995, A unified picture of the crystal structures of metals, Nature 374: 524.ADSCrossRefGoogle Scholar
  41. Söderlind, P., 1998, Theory of the crystal structures of cerium and the light actinides, Advances in Physics 47: 959.ADSCrossRefGoogle Scholar
  42. Taylor, J. C., Loasby, R., G., Dean, J. D., and Linford, P. F., 1965, Some physical properties of plutonium at low temperatures, in: Plutonium 1965, A. E. Kay and M. B. Waldron, eds., Chapman and Hall, London, pp 162–175.Google Scholar
  43. Wallace, D. C., 1998, Electronic and phonon properties of six crystalline phases of Pu metal, Phys. Rev. B 58: 15433.CrossRefGoogle Scholar
  44. Warren, B. E., 1969, X-Ray Diffraction, Addison Wesley, Reading, MA, reprint:, Dover Publications,. Mineola, NY.Google Scholar
  45. Welberry, T. R., and Butler, B. D., 1994, Interpretation of diffuse x-ray scattering via models of disorder, J. Appl. Cryst. 27: 205.CrossRefGoogle Scholar
  46. Wills, John M., and Eriksson, Olle, 2000, Electronic structure of a-and 8-plutonium, in Challenges in Plutonium Science, op. cit., pp 129–151.Google Scholar
  47. Zener, Clarence, 1967, Influence of entropy in phase stabilization, in Phase Stability in Metals an Alloys, Rudman, Peter S.. Stringer, John, and Jaffee, Robert I., eds, McGraw-Hill, New York, pp. 25–38.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • A. C. Lawson
    • 1
  • Joyce A. Roberts
    • 1
  • Barbara Martinez
    • 1
  • James W. RichardsonJr
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations