SCTA and Ceramics

  • O. Toft Sorensen
  • J. M. Criado
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 3)

Abstract

Conventional Thermal Analysis has since its introduction been used abundantly in studies of classical ceramics (clay products, porcelain, concrete) to establish the optimum process conditions for the fabrication of these materials and to measure their properties and behaviour. As a relatively new technique, however, the main applications of Sample-Controlled techniques (SCTA) has been in more fundamental studies of what generally is termed as engineering ceramics (structural and functional ceramics) and in this chapter we shall therefore focus on some recent thermogravimetric and dilatometric studies on these materials. Although many catalyst and adsorbents also can be considered as engineering ceramics, SCTA studies on these materials are however treated separately in Chapters 6 and 7.

Keywords

Activation Energy Thermal Decomposition Scan Electron Micrograph Barium Titanate Yttria Partially Stabilize Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Chen, O.T. Sørensen, G. Meng and D. Peng, J. Thermal Analysis 53 (1998) 397–410.CrossRefGoogle Scholar
  2. 2.
    M. Stockenhuber, H. Mayer and J.A. Lercher. J. Am. Ceram. Soc., 76 (1993) 1185.CrossRefGoogle Scholar
  3. 3.
    F.L. Chen, P. Wang, O.T. Sørensen, G.Y. Meng and D.K. Peng, J. Mater. Chem., 7 (1997) 1533.CrossRefGoogle Scholar
  4. 4.
    I. Aboltina, R. Ramata and I. Brante, Ferroelectrics, 141 (1993) 277.CrossRefGoogle Scholar
  5. 5.
    V.B. Reddy and P.N. Kaushik, Thermochim Acta, 83 (1998b) 347.Google Scholar
  6. 6.
    K.K. Kelly, Bur. Mines. Bull, No. 371 (1934).Google Scholar
  7. 7.
    K.K. Kelly and C.T. Anderson, Bur. Mines Bull No 384 (1935).Google Scholar
  8. 8.
    A. Finkelstein, Ber., 39(1906) 1585.Google Scholar
  9. 9.
    L. Hackspill and G. Wolf, Compt. Rendu, 204 (1937) 1820.Google Scholar
  10. 10.
    E.H. Baker, J. Chem. Soc., (1964) 699.Google Scholar
  11. 11.
    C.H. Bamford, C.F.H. Tipper: Reactions in the solid state. Comprehenseive Chemical Kinetics, vol. 22, Elsevier 1980.Google Scholar
  12. 12.
    T.P. Bagchi and P.K. Sen, Thermochim Acta., 51 (1981) 175.CrossRefGoogle Scholar
  13. 13.
    A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  14. 14.
    E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.CrossRefGoogle Scholar
  15. 15.
    U. Patnik and J. Muralidhar, Thermochim. Acta, 274 (1972) 31.Google Scholar
  16. 16.
    M.D. Judd and M.I. Pope, J. Thermal. Anal., 4 (1972) 31.CrossRefGoogle Scholar
  17. 17.
    T. Kudo and H. Obayashi, J. Electrochem. Soc., 122 (1975) 142–147.CrossRefGoogle Scholar
  18. 18.
    J.J. Bentzen, P.L. Husum and O. Toft Sørensen, in High Tech ceramics (Ed. P. Vincenzini) Elsevier Science Publishers, 1987, 385–398.Google Scholar
  19. 19.
    P.L. Husum and O. Toft Sørensen, Thermochim Acta, 114 (1987) 131–138.CrossRefGoogle Scholar
  20. 20.
    O. Toft Sørensen, J. Thermal Anal., 38 (1992) 228.CrossRefGoogle Scholar
  21. 21.
    M. El Sayed and O. Toft Sørensen. Initial Sintering Stage Kinetics of CeO2 studied by Stepwise Isothermal Dilatometry. Risø-R-518. February 1985. Risø National Laboratory, Denmark.Google Scholar
  22. 22.
    R.L. Coble, J. Am. Ceram. Soc., 41, 1958, 55–62.CrossRefGoogle Scholar
  23. 23.
    W.S. Coblenze et al., In “Sintering Processes, Materials Science and Research” (Ed. G.C. Kuczynski) 13, 1980.Google Scholar
  24. 24.
    M. El-Sayed Ali, O. Toft Sørensen and L. Hälldahl, In “Thermal Analysis, proceedings of the seventh International Conference on Thermal Analysis”. (Ed. Ed. B. Miller), Wiley, NY 1982, 344–349.Google Scholar
  25. 25.
    M. El-Sayed Ali, O. Toft Sørensen and L. Hälldahl, J. Therm. Anal., 25, 1982, 175–180.CrossRefGoogle Scholar
  26. 26.
    J.J. Bacman and C. Cizeron, J. Nucl. Mater., 33, 1969, 271–285.CrossRefGoogle Scholar
  27. 27.
    M. El-Sayed Ali and R. Lorenzelli, J. Nucl. Mater., 87, 1979, 90–96.CrossRefGoogle Scholar
  28. 28.
    H.J. Matzke, In “Nonstoichiometric Oxides” (Ed. O. Toft Sørensen), Academic Press, NY, 1980, 155–232.Google Scholar
  29. 29.
    P. Kofstad, In “Non-stoichiometry, Diffusion and Electrical Conductivity in Binay metal Oxides”, Wiley, NY 1973, 276–283.Google Scholar
  30. 30.
    M- El-Sayed Ali, S. El-Houte and O. Toft Sørensen, Interceram., 40(4), 1994, 248–250.Google Scholar
  31. 31.
    W.H. Rhodes, J. Am. Ceram. Soc., 64(1), 1981, 19–22.CrossRefGoogle Scholar
  32. 32.
    Y. Okamot, J. Leujt, Y. Yamada, K. Hayashi and T. Nishikama, In “The 3rd International Conference on the Science and Technology of Zirconia”, Extended Abstracts, Zirconia, Tokyo, 1986.Google Scholar
  33. 33.
    H.J. Matzke, in “Nonstoichiometric Oxides” (Ed. O. Toft Sørensen) Academic Press 1981, 155–232CrossRefGoogle Scholar
  34. 34.
    Huan-ting Wang, Xing-qin Liu, Fang-lim Chen, Guang-yao Meng and O. Toft Sørensen, J. Am. Ceram Soc. 81(3) (1998) 81–84.Google Scholar
  35. 35.
    S. Mkipirti, in Powder metallurgy (Ed. W Leszynski) Interscience New York 1996, 97.Google Scholar
  36. 36.
    H.E. Exner and G. Petzov, in Sintering Processes (Ed. G.C. Kuczynski) Plenum Press, NY 1980.Google Scholar
  37. 37.
    G.Y. Meng and O. Toft Sørensen, “Kinetic Analysis on Low Temperature Sintering Proicess for Y-TZP Ceramics” in Advanced Structural Materials (Ed. Y Han) Elsevier Science Publishers, Amsterdam, vol 2, 1991, 369–374.Google Scholar
  38. 38.
    G. Theunissen, Microstructure, Fracture Toughness and Strength of (ultra) Fine Grained Tetragonal Zirconia Ceramics, Thesis, 1991.Google Scholar
  39. 39.
    T. Arii, K. Terayama and N. Fujii, J. Therm. Anal., 47(1996) 1649–1661.CrossRefGoogle Scholar
  40. 40.
    J. Rouquerol and M. Ganteaume; J. Thermal Anal., 11 (1977) 201.CrossRefGoogle Scholar
  41. 41.
    J. Rouquerol, F. Rouquerol and M. Ganteaume; J. Catal. 36 (1975) 99CrossRefGoogle Scholar
  42. 42.
    J. Rouquerol, F. Rouquerol and M. Ganteaume, J. Catal., 57 (1979) 222.CrossRefGoogle Scholar
  43. 43.
    F. Rouquerol, J. Rouquerol and B. Imelik, In Principles and applications of pore structural characterization, ed. By J.M. Haynes and P. Rossi-Doria, Bristol, Arrowsmith (1985) 213.Google Scholar
  44. 44.
    M.H. Stacey, Anal. Proc., 22 (1985) 242.Google Scholar
  45. 45.
    M.H. Stacey, Langmuir, 3 (1987) 681.CrossRefGoogle Scholar
  46. 46.
    P.A. Barnes and G.M.B. Parkes, Preparation of Catalysts VI (Scientific Bases for the Preparation of Catalysts); (G. Pocelet et al. Eds.) Elsevier, Amsterdam (Holland) 1995.Google Scholar
  47. 47.
    L.A. Pérez-Maqueda, J.M. Criado, C. Real, J. Subrt and J. Bohácek, J. Mater. Chem. 9 (1999) 1839.CrossRefGoogle Scholar
  48. 48.
    L.A. Pérez-Maqueda, J.M. Criado, J. Subrt and C. Real, Catal. Letters, 60 (1999) 151.CrossRefGoogle Scholar
  49. 49.
    G.S. Chopra, C. Real, M.D. Alcalá, L.A. Pérez-Maqueda, J. Subrt and J.M. Criado, Chem. Mat., 11 (1999) 1128.CrossRefGoogle Scholar
  50. 50.
    J.M. Criado, F.J. Gotor, C. Real, F. Jiménez, S. Ramos and J. Del Cerro; Ferroelectrics, 115 (1991) 43.CrossRefGoogle Scholar
  51. 51.
    J.M. Criado, M.J. Diánez, F. Gotor, C. Real, M. Mundi, S. Ramos and J. Del Cerro, Ferroelectric Letters, 14 (1992) 79.CrossRefGoogle Scholar
  52. 52.
    F.J. Gotor, C. Real, M.J. Diánez and J.M. Criado, J. Solid State Chem., 123 (1996) 301.CrossRefGoogle Scholar
  53. 53.
    F.J. Gotor, L.A. Pérez-Maqueda and J. M. Criado, J. Eur. Ceram. Soc., 22 (2002) 2227.Google Scholar
  54. 54.
    L.A. Pérez-Maqueda, F. Gotor, M.J. Diánez, C. Real and J.M. Criado, In press.Google Scholar
  55. 55.
    K.S. Meyers, M. Seivastava and R.F. Speyer, Proc. SPIE-Int. Soc. Opt. Eng. 3330 (1998).Google Scholar
  56. 56.
    A.V. Ragulya, Nanostruct. Mater., 10 (1998) 349.CrossRefGoogle Scholar
  57. 57.
    A.V. Ragulya and A.V. Polotay, Ferroelectrics, 254, (2001) 41.CrossRefGoogle Scholar
  58. 58.
    A.I. Bykov, A.V. Polotay, A.V. Ragulya and V.V. Skoeokhod, Powder Metall. Met. Ceram., 39 (2001) 395.Google Scholar
  59. 59.
    K.S. Meyers and R.F. Speyer, Mater. Res. Soc. Symp. Proc., 547 (1999) 115CrossRefGoogle Scholar
  60. 60.
    G. Agarwall, R.F. Speyer and W.S. Hakenberger, J. Mater. Res., 11 (1996) 671.CrossRefGoogle Scholar
  61. 61.
    G. Agarwall and R.F. Speyer, Mater. Res. Soc. Symp. Proc., 431 (1996) 427.CrossRefGoogle Scholar
  62. 62.
    A.V. Ragulya, V.V. Skorokhod and M.G. Burenkov, Key Eng. Mater., 132–136, (1997) 674.CrossRefGoogle Scholar
  63. 63.
    G. Agarwall and R.F. Speyer, J. Mater. Res., 12 (1997) 2447.CrossRefGoogle Scholar
  64. 64.
    D. Hudda, M.A. El Baradie, M.S.J. Hashmi and R. Puyane, J. Mater. Sci., 33 (1998) 271.CrossRefGoogle Scholar
  65. 65.
    J. Zimmer, F. Roether, K. Jaenicke-Rossler and G. Leither, Adv. Sci. Tecnol., 14 (1999) 693.Google Scholar
  66. 66.
    G. Gilde, P.A. Patel and M. Patterson, Proc. SPIE-Int. Soc. Opt. Eng., 3705 (1999) 94.Google Scholar
  67. 67.
    K. Maca, H. Hadraba and J. Cihlar, EUROMAT 99, Biannu. Meet. Eur. Mater. Soc. (FEMS) 12 (2000) 161.Google Scholar
  68. 68.
    O.B. Zgalat-Lozynskyy, A.V. Ragulya and M. Herrmann, NATO Science Series, II: Mathematics, Physics and Chemistry, 16 (2001) 161.Google Scholar
  69. 69.
    Y. Masuda and H. Satoh, Netsu Sukutey, 28 (2001) 193.Google Scholar
  70. 70.
    T. R. G. Kutty, K.B. Khan, P.V. Hedge, A.K. Sengupta, S. Majumdar and D.S.C. Purushotham, J. Nucl. Mater., 297 (2001) 120.CrossRefGoogle Scholar
  71. 71.
    O.T. Sorensen, J. Thermal Anal., 38 (1992) 213.CrossRefGoogle Scholar
  72. 72.
    A. Dwivedi and R.F. Speyer, Thermochim. Acta, 247 (1994) 431.CrossRefGoogle Scholar
  73. 73.
    W.S. Hackenberger, T.R. Shrout and R.F. Speyer, Sintering Technol. [Conf.] 505 (1996).Google Scholar
  74. 74.
    T. Arii, K. Terayama and N. Fujii, J. Thermal Anal., 47 (1996) 1649.CrossRefGoogle Scholar
  75. 75.
    J. Witt, R.F. Speyer and L. Murali, Rev. Sci. Instrum., 68 (1997) 2546.CrossRefGoogle Scholar
  76. 76.
    M.Y. Nishimoto, R.F. Speyer and W.S. Hackenberger, J. Mat. Sci., 36 (2001) 2271.CrossRefGoogle Scholar
  77. 77.
    M.D. Alcalá, C. Real and J.M. Criado, J. Thermal Anal., 38 (1992) 313.CrossRefGoogle Scholar
  78. 78.
    M.D. Alcalá, J.M. Criado and C. Real, Mat. Sci. Forum,383 (2002) 25.CrossRefGoogle Scholar
  79. 79.
    M.D. Alcalá, J.M. Criado and C. Real, Adv. Eng. Mater., 4 (2002) 478.CrossRefGoogle Scholar
  80. 80.
    C. Real, M.D. Alcalá and J.M. Criado, Solid State Ionics, 95 (1997) 29.CrossRefGoogle Scholar
  81. 81.
    A. Feylessoufi, M. Crespin, P. Dion, F. Bergaya, H. Van Damme and P. Richard, Advanced Cement Bases Materials, 6 (1997) 21.Google Scholar
  82. 82.
    Y. Grillet, J.M. Cases, M. Francois, J. Rouquerol and J.E. Piorier, Clays and Clay Min., 36 (1988) 233.CrossRefGoogle Scholar
  83. 83.
    P.L. Llewellin, V. Chevrot, J. Regai, O. Cerclier, J. Estienne and F. Rouquerol, Solid State Ionics, 101–103 (1997) 1293.CrossRefGoogle Scholar
  84. 84.
    E. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. L. Llewellin and F. Rouquerol, J. Optoelectr. Advan. Mater., 2 (2000) 552.Google Scholar
  85. 85.
    T. Arii, T. Taguchi, A. Kishi, M. Ogawad and Y. Sawada, J. Eur. Ceram. Soc. 22 (2002) 2283.CrossRefGoogle Scholar
  86. 86.
    S. Bordère, A. Floreancing, F. Rouquerol and J. Rouquerol, Solid State Ionics 63–65 (1993) 229.CrossRefGoogle Scholar
  87. 87.
    S. Bordère, F. Rouquérol, J. Rouquérol, J. Estienne and A. Floreancig; J. Therm. Anal., 36 (1990) 1651–1668.CrossRefGoogle Scholar
  88. 88.
    S. Bordère, F. Rouquérol, P.L. Llewellyn and J. Rouquérol, Thermochim. Acta, 282–283 (1996) 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • O. Toft Sorensen
    • 1
  • J. M. Criado
    • 2
  1. 1.Risoe National LaboratoryRoskildeDenmark
  2. 2.Instituto de Ciencia de Materiales, Centro CoordinadoC.S.I.C-Universidad de SevillaSevillaSpain

Personalised recommendations