Graphical Rasch Models

  • Svend Kreiner
  • Karl Bang Christensen

Abstract

This paper defines a class of multivariate models combining features of Rasch type models with features of graphical interaction models into a common framework for analysis of criterion related construct validity and differential item functioning. Item analysis by Graphical Rasch models is illustrated with reanalysis of a summary Health scale counting numbers of experienced symptoms within the last six months.

Keywords

Latent Variable Differential Item Functioning Exogenous Variable Conditional Independence Item Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: Wiley.Google Scholar
  2. Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika 38, 123–140.CrossRefGoogle Scholar
  3. Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika 42, 69–81.CrossRefGoogle Scholar
  4. Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika 43, 561–573.CrossRefGoogle Scholar
  5. Arnold, S.F. (1988). Sufficient Statistics. In: Kotz, S. and Johnson, N.L. (eds.), Encyclopedia of Statistical Sciences. New York: Wiley.Google Scholar
  6. Cox, D.R. and Wermuth, N. (1996). Multivariate Dependencies: Models, Analysis and Interpretation. London: Chapman and Hall.Google Scholar
  7. Darroch, J.N., Lauritzen, S.L. and Speed, T. (1980). Markov fields and log-linear interaction models for contingency tables. Annals of Statistics 8, 522–539.CrossRefGoogle Scholar
  8. Edwards, D. (2000). Introduction to Graphical Modelling. 2nd Edition. New York: Springer-Verlag.CrossRefGoogle Scholar
  9. Glas, C.A.W and Verhelst, N.D. (1995). Testing the Rasch Model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments and Applications. New York: Springer-Verlag.Google Scholar
  10. Hanson, B.A. (1998). Uniform DIF and DIF defined by differences in item response functions. Journal of Educational and Behavioral Statistics 23, 244–253.Google Scholar
  11. Holland, P.W. and Wainer, H., eds. (1993). Differential Item Functioning. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  12. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika 49, 223–245.CrossRefGoogle Scholar
  13. Kelderman, H. (1995). The polytomous Rasch model within the class of generalized linear symmetry models. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments and Applications. New York: Springer-VerlagGoogle Scholar
  14. Kolmogoroff, A.N. (1942). Definitions of center of dispersion and measure of accuracy from a finite number of observations. Izv. Akad. Nauk. SSSR Ser. Mat. 6, 3–32. (Russian).Google Scholar
  15. Kreiner, S. (1987). Analysis of multidimensional contingency tables by exact conditional tests: techniques and strategies. Scandinavian Journal of Statistics 14, 97–112.Google Scholar
  16. Kreiner, S. (1993). Validation of index scales for analysis of survey data: The Symptom Index. In: Dean, K. (ed.), Population Health Research. London: Sage Publications.Google Scholar
  17. Kreiner, S. (1998). Interaction model. In: Armitage, P. and Colton, T. (eds.), Encyclopedia of Biostatistics. Chichester: Wiley.Google Scholar
  18. Lauritzen, S.L. (1996). Graphical Models. London: Clarendon Press.Google Scholar
  19. Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149–174.CrossRefGoogle Scholar
  20. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: The Danish Institute of Educational Research.Google Scholar
  21. Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generality and validity of scientific statements. In: Blegvad, M. (ed.), The Danish Yearbook of Philosophy. Copenhagen: Munksgaard.Google Scholar
  22. Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics 9, 23–30.Google Scholar
  23. Whitmore, M.L and Schumacker, R.E. (1999). A comparison of logistic regression and analysis of variance differential item functioning detection methods. Educational and Psychological Measurement 59, 910–927.CrossRefGoogle Scholar
  24. Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Svend Kreiner
    • 1
  • Karl Bang Christensen
    • 2
  1. 1.University of CopenhagenDenmark
  2. 2.National Institute of Occupational HealthDenmark

Personalised recommendations