Parametric and Nonparametric Item Response Theory Models in Health Related Quality of Life Measurement

  • Ivo W. Molenaar

Abstract

Compared to the measurement of other latent traits like attitudes or abilities, measurement of quality of life poses somewhat more and somewhat different methodological challenges. This paper discusses issues like unidimensionality, number of answer categories per item, information source and the choice between general and group specific questionnaires. It is argued that item response theory can make a useful contribution to quality of life measurement. The parametric Rasch model and the nonparametric Mokken model are viewed as particularly promising.

Keywords

Item Response Theory Latent Trait Item Parameter Person Parameter Polytomous Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E.B. (1980). Comparing latent distributions. Psychometrika 45, 121–134.CrossRefGoogle Scholar
  2. Andersen, E.B. and W0lk Olsen, L.(2001). The life of Georg Rasch as a mathematician and as a statistician. In: A. Boomsma, M.A.J. van Duijn, and T.A.B. Snijders (eds.), Essays on Item Response Theory. New York: Springer-Verlag.Google Scholar
  3. De Leeuw, E.D and Collins, M. (1997). Data collection methods and survey quality: an overview. In: Lyberg, L., Biemer, P., Collins, M., de Leeuw, E., Dippo, C., Schwartz, N. and Trewin, D. (eds.), Survey Measurement and Process Quality. New York: Wiley.Google Scholar
  4. De Leeuw, E.D., Hox, J.J. and Snijers, G. (1995). The effect of computer assisted interviewing on data quality: a review. Journal of Market Research Society 37, 325–344.Google Scholar
  5. Diaz, P., Mercier, C., Hachey, R., Caron, J. and Boyer, G. (1999). An evaluation of psychometric properties of the client’s questionnaire of the Wisconsin Quality of Life Index-Canadian Version (CaW-QLI). Quality of Life Research 8, 509–514.PubMedCrossRefGoogle Scholar
  6. Ellis, J.L. and Van den Wollenberg, A.L. (1993). Local homogeneity in latent trait models. A characterization of the homogeneous monotone IRT model. Psychometrika 58, 417–429.CrossRefGoogle Scholar
  7. Fayers, P.M., Hand, D.J., Bjordal, K. and Groenvold, M. (1997). Causal indicators in quality of life research. Quality of Life Research 6, 393–406.PubMedCrossRefGoogle Scholar
  8. Fischer, G.H. and Molenaar, I.W., eds. (1995). Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-Verlag.Google Scholar
  9. Fischer, G.H. (1995). Derivations of the Rasch model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-Verlag.Google Scholar
  10. Glas, C.A.W. and Verhelst, N.D. (1995). Testing the Rasch model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-Verlag.Google Scholar
  11. Grayson, D.A. (1988). Two-group classification in latent trait theory: scores with monotone likelihood ratio. Psychometrika 53, 383–392.CrossRefGoogle Scholar
  12. Hawthorne, G., Richardson, J. and Osborne, R. (1999). The Assessment of Quality of Life (AQoL) instrument: a psychometric measure of health-related quality of life. Quality of Life Research, 8, 209–224.PubMedCrossRefGoogle Scholar
  13. Hemker, B.T., Sijtsma K., Molenaar, I.W. and Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika 61, 679–693.CrossRefGoogle Scholar
  14. Hemker, B.T., Sijtsma K., Molenaar, I.W. and Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika 62, 331–347.CrossRefGoogle Scholar
  15. Junker, B.W. (2001). On the interplay between nonparametric and parametric IRT, with some thoughts about the future. In: Boomsma, A., van Duijn, M.A.J. and Snijders, T.A.B. (eds.), Essays on Item Response Theory. New York: Springer-Verlag.Google Scholar
  16. Lindsay, B.G., Clogg, C.C. and Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association 86, 96–107.CrossRefGoogle Scholar
  17. Loevinger, J. (1948). The technique of homogeneous tests compared with some aspects of “scale analysis” and factor analysis. Psychological Bulletin 45, 507–530.PubMedCrossRefGoogle Scholar
  18. Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores. Reading MA: Addison-Wesley.Google Scholar
  19. Mokken, R.J. (1971). A Theory and Procedure of Scale Analysis: With Applications in Political Research. The Hague: Mouton, Berlin: De Gruyter.CrossRefGoogle Scholar
  20. Molenaar, I.W. (1992). Statistical Models for Educational Testing and Attitude Measurement. In: van der Heijden, P.G.M., Jansen, W. Francis, B. And Seeber, G.U.H. (eds.), Statistical Modeling. Amsterdam: Elsevier Science Publishers.Google Scholar
  21. Molenaar, I.W. (1995). Some background for item response theory and the Rasch model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-Verlag.Google Scholar
  22. Molenaar, I.W. and Sijtsma, K. (2000). User’s manual MSP5 for Windows: A Program for Mokken Scale Analysis for Polytomous Items. Version 5.0 [Software manual]. Groningen: ProGAMMA.Google Scholar
  23. Neyman, J. and Scott, E.L. (1948). Consistent estimates based on partially consistent observations. Econometrica 16, 1–32.CrossRefGoogle Scholar
  24. Ramsay, J.O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika 56, 611–630.CrossRefGoogle Scholar
  25. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: The Danish Institute of Educational Research. [Expanded edition, 1980, Chicago: The University of Chicago Press].Google Scholar
  26. Richman, W.L., Kiesler, S. Weisband, S. and Drasgow, F. (1999). A meta-analytic study of social desirability distortion in computer administered questionnaires, traditional questionnaires and interviews. Journal of Applied Psychology 84, 754–775.CrossRefGoogle Scholar
  27. Ringdal, K., Ringdal, G.I., Kaasa, S., Bjordal, K., Wisløff, F., Sundstrøm, S. and Hjermstad, M.J. (1999). Assessing the consistency of psychometric properties of the HRQoL scales within the EORTC QLQ-C30 across populations by means of the Mokken scaling model. Quality of Life Research 8, 25–43.PubMedCrossRefGoogle Scholar
  28. Sijtsma, K. (1998). Methodology review: nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement 22, 3–32.CrossRefGoogle Scholar
  29. Sijtsma, K., and Van der Ark, L.A. (2001). Progress in NIRT analysis of polytomous item scores: dilemmas and practical solutions. In Boomsma, A., van Duijn, M.A.J. and Snijders, T.A.B. (eds.), Essays on Item Response Theory (pp. 297–318). New York: Springer-Verlag.CrossRefGoogle Scholar
  30. Stout, W.F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika 55, 293–325.CrossRefGoogle Scholar
  31. Theunissen, N.C.M., Vogels, T.G.C., Koopman, H.M., Verrips, G.H.W., Zwinderman, K.A.H., Verloove-Vanhorick, S.P. and Wit, J.M. (1998). The proxy problem: child report versus parent report in health-related quality of life research. Quality of Life Research 7, 387–397.PubMedCrossRefGoogle Scholar
  32. Tsutakawa, R.K. and Johnson, J.C. (1990). The effect of uncertainty of item parameter estimation on ability estimates. Psychometrika 55, 371–390.CrossRefGoogle Scholar
  33. Van der Linden, W.J. and Hambleton, R.K., eds. (1997). Handbook of Modern Item Response Theory. New York: Springer Verlag.Google Scholar
  34. Verhelst, N.D. and Glas, C.A.W. (1995). The one parameter logistic model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-Verlag.Google Scholar
  35. Wainer, H. (1990). Computerized Adaptive Testing. A Primer. Hillsdale NJ: Erlbaum.Google Scholar
  36. Warm, T.A. (1989). Weighted likelihood estimation of ability in item response models. Psychometrika 54, 427–450.CrossRefGoogle Scholar
  37. Zhang, J. and Stout, W.F. (1999a). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika 64, 129–152.CrossRefGoogle Scholar
  38. Zhang, J., and Stout, W.F. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika 64, 213–249.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Ivo W. Molenaar
    • 1
  1. 1.University of GroningenNetherlands

Personalised recommendations