Some Aspects of Analysis of Gene Array Data

  • Borko D. Jovanovic
  • Raymond C. Bergan
  • Warren A. Kibbe
Part of the Cancer Treatment and Research book series (CTAR, volume 113)

Abstract

The past century brought along tremendous development in statistical methods, accompanying similar advances in the biomedical field and genetics (Elston and Thompson, 2000). In the later half of 1990’s another significant leap forward has occurred in the biomedical field with the advent of gene arrays (Duggan et al., 1999). Gene arrays provide the ability to measure the presence of tens of thousands of genes at one time, and to compare this set of genes between two or more systems. The emergence of this technology, along with attempts to integrate data output with underlying biology, has created one of most lively areas of applied multivariate statistics to recently emerge.

Keywords

Acute Myeloid Leukemia Microarray Data Housekeeping Gene Singular Value Decomposition Gene Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J. (1994). RNA synthesis and RNA processing. In: B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson (eds.), Molecular Biology of the Cell. New York: Garland Publishing Inc., pp. 365–384.Google Scholar
  2. Anderson L, Seilhamer J. (1997). A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18: 533–537.PubMedCrossRefGoogle Scholar
  3. Bowtell D. D. (1999). Options available-from start to finish-for obtaining expression data by microarray [published erratum appears in Nat Genet (1999) 21:241]. Nat Genet, 21: 25–32.PubMedCrossRefGoogle Scholar
  4. Braxton S. and Bedilion T. (1998). The integration of microarray information in the drug development process. Curr Opin Biotechnol 9: 643–9.PubMedCrossRefGoogle Scholar
  5. Chen Y, Dougherty ER, Bittner ML. (1997). Ratio-Based Decisions and the Quantitative Analysis of cDNA Microarray Images. J of Biomedical Optics 2: 364–374.CrossRefGoogle Scholar
  6. Debouck C and Goodfellow PN. (1999). DNA microarrays in drug discovery and development. Nat Genet 21:48–50.Google Scholar
  7. Duggan DJ, Bittner M, Chen Y, Meltzer P and Trent J.M. (1999). Expression profiling using cDNA microarrays. Nat Genet 21:10–4.Google Scholar
  8. Eisen M, Spellman PT, Brown PO, Bottstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.PubMedCrossRefGoogle Scholar
  9. Elston RC and Thompson EA. (2000). A Century of Biometrical Genetics. Biometrics 56: 659–666.PubMedCrossRefGoogle Scholar
  10. Evans WE and Relling MV. (1999). Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286: 487–91.PubMedCrossRefGoogle Scholar
  11. GeNet User Manual,Version 2.1. (2000). Silicon Genetics.Google Scholar
  12. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caliguiri MA, Bloomfield CD and Lander ES. (1999). Mollecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286: 531–537.PubMedCrossRefGoogle Scholar
  13. Gordon AD. (1999). Classification (2“d ed.). Boca Raton: Chapman and Hall.Google Scholar
  14. Greller LD and Tobin FL. (1999). Detecting Selective Expression of Genes and Proteins. Genome Research 9: 282–296.PubMedGoogle Scholar
  15. Hand DJ. (1981). Discrimination and Classification. Chichester: Wiley.Google Scholar
  16. Hartigan JA. (1975). Clustering Algorithms. New York: Wiley.Google Scholar
  17. Hilsenbeck SG, Friedrichs WE, Schiff R, O’Connell P, Hansen R, Osborne CK and Fuqua SAW. (1999). Statistical Analysis of Array Expression data as Applied to the Problem of Tamoxifen Resistance. Journal of the National Cancer Institute 91: 453–459.PubMedCrossRefGoogle Scholar
  18. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JB and Fedoroff N. (2000). Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proc. Natl. Acad. Sci. USA 97: 8409–8414.PubMedCrossRefGoogle Scholar
  19. Kaski S. (1997). Data exploration using self-organizing maps. Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineering Series No. 82. Finnish Academy of Technology. Espoo. Available on www.cis.hut.fik-sami/thesis/.Google Scholar
  20. Kerr MK, Martin M and Churchill GA. (2000). Analysis of Variance for Gene Expression Microarray Data. Available on www.jax.org. Google Scholar
  21. Kim S, Dougherty ER, Chen Y, Krishnamoorty S, Meltzer P, Trent J and Bittner M. (2000). Multivariate Measurement of Gene Expression. Genomics 67: 201–209.PubMedCrossRefGoogle Scholar
  22. Kohonen T. (1999). Self-Organizing Maps, Third edition. Berlin: Springer-Verlag.Google Scholar
  23. Nebert DW. (1997). Pharmacogenetics. New York: Oxford University Press, p. 344.Google Scholar
  24. Newton MA, Kendziorki CM, Richmond CS, Blattner FR and Tsui KW. (2000). On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. Technical report #139, Department of Biostatistics and Medical Informatics, University of Wisconsin at Madison.Google Scholar
  25. O’Brien C. (1997). Cancer genome anatomy project launched. Mol Med Today 3: 94.PubMedCrossRefGoogle Scholar
  26. Oja E and Kaski S (Eds.). (1999). Kohonen Maps. Amsterdam: Elsevier.Google Scholar
  27. Pinkel D. (2000). Cancer Cells, chemotherapy and gene clusters. Nature Genetics 24: 208–209.PubMedCrossRefGoogle Scholar
  28. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanab L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville E A, Pommier Y, Botstein D, Brown PO and Weinstein JN. (2000). A gene expression database for the molecular pharmacology of cancer [see comments]. Nat Genet 24: 236–44.PubMedCrossRefGoogle Scholar
  29. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES and Golub TR. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and applications to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA, 96: 29072912.Google Scholar
  30. Tibshirani R, Hastie T, Eisen M, Ross D, Botstein D and Brown P. (1999). Clustering methods for the analysis of DNA microarray data. Available on-line from Stanford University Bioinformatics Group. www.stat.stanford.edu/.titis. Google Scholar
  31. Wittes J and Friedman HP. (1999). Searching for Evidence of Altered gene expression: a Comment on Statistical Analysis of Microarray Data. Journal of the National Cancer Institute 91: 400–401.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Borko D. Jovanovic
    • 1
    • 3
    • 4
  • Raymond C. Bergan
    • 2
    • 3
  • Warren A. Kibbe
    • 3
  1. 1.Department of Preventive MedicineNorthwestern UniversityUSA
  2. 2.Division of Hematology/Oncology, Department of MedicineNorthwestern UniversityUSA
  3. 3.Robert H. Lurie Comprehensive CancerNorthwestern UniversityUSA
  4. 4.General Clinical Research Center of The Feinberg School of MedicineNorthwestern UniversityUSA

Personalised recommendations