Regularized Inversion for Towed-Array Shape Estimation

  • Stan E. Dosso
  • Nicole E. Collison
Chapter

Abstract

This chapter describes a new approach to the inverse problem of estimating the shape of a ship-towed hydrophone array using near-field acoustic measurements. The data consist of the relative travel times of arrivals along direct and reflected paths from sources deployed by two consort ships maintaining station with the moving tow ship (the “dual-shot method”). Previous inversion algorithms typically apply least-squares methods based on simplifying assumptions, such as straight-line propagation and exact knowledge of the source positions. Here, a regularized inversion is developed based on ray theory, with the source positions included as unknown parameters subject to a priori estimates and uncertainties. In addition, a minimum-structure array shape is determined by minimizing the three-dimensional curvature subject to fitting the data to a statistically meaningful level, thereby reducing spurious fluctuations (roughness) in the solution. Finally, the effect of the survey geometry is investigated by defining a mean sensor-position error measure based on the a posteriori uncertainty of the inversion. The optimal source configuration is determined by minimizing this error with respect to the source positions using an efficient hybrid optimization algorithm. The inversion and optimization procedures are illustrated using realistic synthetic examples.

Keywords

Source Position Inversion Algorithm Linear Inverse Problem Data Misfit Array Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B+96]
    G.H. Brooke, S.J. Kilistoff, and B.J. Sotirin. Array element localization algorithms for vertical line arrays, in J.S. Papadakis (ed.), Proceedings of the Third European Conference on Underwater Acoustics, pp. 537–542, Crete University Press, 1996.Google Scholar
  2. [C+87]
    S.C. Constable, R.L. Parker, and C.G. Constable. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52:289–300, 1987.ADSCrossRefGoogle Scholar
  3. [CD82]
    K.C. Creager and L.M. Dorman. Location of instruments on the seafloor by joint adjustment of instrument and ship positions, J. Geophys. Res., 87:8379–8388, 1982.ADSCrossRefGoogle Scholar
  4. [D+98a]
    S.E. Dosso, M.R. Fallat, B.J. Sotirin, and J.L. Newton. Array element localization for horizontal arrays via Occam’s inversion, J. Acoust. Soc. Am., 104:846–859, 1998.ADSCrossRefGoogle Scholar
  5. [D+98b]
    S.E. Dosso, G.H. Brooke, S.J. Kilistoff, B.J. Sotirin, V.K. Mcdonald, M.R. Fallat and N.E. Collison. High-precision array element localization of vertical line arrays in the Arctic Ocean”, IEEE J. Ocean. Eng., 23:365–379, 1998.CrossRefGoogle Scholar
  6. [DS99]
    S.E. Dosso and B.J. Sotirin. Optimal array element localization, J. Acoust. Soc. Am., 106:3445–3459, 1999.ADSCrossRefGoogle Scholar
  7. [FD99]
    M.R. Fallat and S.E. Dosso, Geoacoustic inversion via local, global and hybrid algorithms, J. Acoust. Soc. Am., 105:3219–3230, 1999.ADSCrossRefGoogle Scholar
  8. [HB98]
    M. Hansruedi and D.E. Boerner. Optimized and robust experimental design: a non-linear application of EM sounding, Geophys. J. Int., 132:458–468, 1998.ADSCrossRefGoogle Scholar
  9. [HS94]
    M. Hardt and F. Scherbaum. Design of optimum networks for aftershock recording, Geophys. J. Int., 117:716–726, 1994.ADSCrossRefGoogle Scholar
  10. [H+96]
    W.S. Hodgkiss, D.E. Ensberg, J.J. Murray, G.L. D’Spain, N.O. Booth, and P.W. Schey. Direct measurement and matched-field inversion approaches to array shape estimation, IEEE J. Ocean. Eng., 21:393–401, 1996.CrossRefGoogle Scholar
  11. [LT84]
    L.R. Lines and S. Treitel. Tutorial: A review of least-squares inversion and its application to geophysical inverse problems, Geophys. Prosp., 32:159–186, 1984.ADSCrossRefGoogle Scholar
  12. [L+95]
    P. Liu, S. Hartzeil, and W. Stephenson. Non-linear multiparameter inversion using a hybrid global search algorithm: Applications in reflection seismology, .Geophys. J. Int., 122:991–1000, 1995.ADSCrossRefGoogle Scholar
  13. [Mil83]
    P.H. Milne. Underwater Acoustic Positioning Systems. Cambridge University Press, Cambridge, 1983Google Scholar
  14. [Old83]
    D.W. Oldenburg. Funnel functions in linear and nonlinear appraisal, J. Geophys. Res.: 88:7387–7398, 1983.ADSCrossRefGoogle Scholar
  15. [OC97]
    J.C. Osler and D.M.F. Chapman. Seismo-acoustic determination of the shear-wave speed of surficial clay and silt sediments on the Scotian shelf, Canad. Acoust., 24:11–22, 1997.Google Scholar
  16. [P+92]
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in FORTRAN. Cambridge University Press, Cambridge, 1992.MATHGoogle Scholar
  17. [S+90]
    J. A. Scales, P. Docherty, and A. Gersztenkorn. Regularisation of nonlinear inverse problems: Imaging the near-surface weathering layer, Inverse Problems, 6:115–131, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  18. [SH90]
    B.J. Sotirin and J. A. Hildebrand. Acoustic navigation of a large-aperture array, J. Acoust. Soc. Am., 87:154–167, 1990.ADSCrossRefGoogle Scholar
  19. [Ste76]
    B.D. Steinberg. Principles of Aperture and A rray System Design. Wiley, New York, 1976.Google Scholar
  20. [SH76]
    H. Szu and R. Hartley. Fast simulated annealing, Phys. Lett. A., 122:157–162, 1987.ADSCrossRefGoogle Scholar
  21. [T+76]
    W.M. Telford, L.P. Geldart, R.E. Sherif, and D.A. Keys. Applied Geophysics. Cambridge University Press, Cambridge, 1976.Google Scholar
  22. [vB+89]
    E.C. van Ballegooijen, G.W.M. van Mierlo, C. van Schooneveld, P.P.M. van der Zalm, A.T. Parsons, and N.H. Field. Measurement of towed array position, shape and attitude, IEEE J. Ocean. Eng., 14:375–383, 1989.CrossRefGoogle Scholar
  23. [vS89]
    C. van Schooneveld. Inverse problems: A tutorial survey. In Y.T. Chan (ed.), Underwater Acoustic Data Processing, pp. 393–411, Kluwer Academic, Amsterdam, 1989.CrossRefGoogle Scholar
  24. [VH98]
    H.T. Vincent II and S.-L.J. Hu. Geodetic position estimation of underwater acoustic sensors. J. Acoust. Soc. Am., 102:3099, 1998.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Stan E. Dosso
  • Nicole E. Collison

There are no affiliations available

Personalised recommendations