Adsorption Studies of Humidity Presented by an Unbleached Kraft Woodpulp

  • Jorge M. B. Fernandes Diniz
  • Maria H. Gil
  • José A. A. M. Castro
Chapter

Abstract

A direct adsorption kinetic study of an unbleached Kraft woodpulp has exhibited a sequence of regimes of adsorption. The kinetics of adsorption of the first two stages may be described as typical of a first order process. The results obtained are perfectly consistent with qualitative descriptions of structure and fibre bonding in these materials, as abundantly reported in the literature. For the two first regimes, values for time constants and maximum mass of adsorbed water were evaluated. Clearly this technique reveals an outstanding potential for crucial information about surface area characterisation of paper woodpulps.

Keywords

Adsorbed Water Adsorption Study Lactone Formation Fibre Bonding Cellulose Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stephanopoulos, G., 1984, Chemical Process Control: An Introduction to Theory and Practice, 1 st. ed., Prentice-Hall Int. Ed., Englewood Cliffs, Chapters 7 and 10.Google Scholar
  2. 2.
    Ogunnaike, B. A., Ray, W. H., 1994, Process Dynamics, modelling and control, 1 st. ed., Oxford University Press, New York, Chapter 5.Google Scholar
  3. 3.
    Fernandes Diniz, J. M. B., Pethybridge, A. D., 1995, Interfering Lactone Formation in Alkalimetric Studies of Paper Woodpulps, Holzforschung 49: 81–83.CrossRefGoogle Scholar
  4. 4.
    Pinto, P. V., Gil, M. H., Dias, A. M., Marques, A. T., Silva, M. A., 1989, Estudo de Algumas Caracteristicas dos Adesivos de Epóxido, Materiais 89, Conference of the Portuguese Society of Materials, 351–360.Google Scholar
  5. 5.
    Piedade, A. P., Guthrie, J. T., Kazlauciunas, A., Gil, M. H., 1995, Characterisation of cellulose derivatives — relevance to sensor development, Cellulose 2: 243–263.CrossRefGoogle Scholar
  6. 6.
    Chatterjee, P. K., Nguyen, H. V., 1985, Mechanism of Liquid Flow and Structure Property Relationships. In Absorbency (P. K. Chatterjee, ed.), Elsevier, Amsterdam, 34.Google Scholar
  7. 7.
    Nissan, A. H., Walker, W. C., 1977, Lectures on Fiber Science, Joint Textbook Committee of the Paper Industry, Ed., Pulp and Paper Technology Series no. 4, Uppsala, pp 73–122.Google Scholar
  8. 8.
    Gregg, S. J., Sing, K. S. W., 1982, Adsorption, Surface Area and Porosity, 2nd. ed., Academic Press, 274.Google Scholar
  9. 9.
    Bristow, J. A., 1986, The Pore Structure and Sorption of Liquids. In Paper Structure and Properties (J. A. Bristow and P. Kolseth, eds.), Marcel Dekker, New York, pp 183–201.Google Scholar
  10. 10.
    Westman, L., Lindström, T., 1981, Swelling and Mechanical Properties of Cellulose Hydrogels. I. Preparation, Characterization, and Swelling Behavior, J. Appl. Polymer Sci. 26: 2519–2532.CrossRefGoogle Scholar
  11. 11.
    Herrington, T. M., 1985, The Surface Potential of Cellulose. In Trans of the Eighth Fundamental Research Symposium (V. Punton, ed.), Mechanical Engineering Publications Ltd, London, vol. I, pp 165–181.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jorge M. B. Fernandes Diniz
    • 1
  • Maria H. Gil
    • 2
  • José A. A. M. Castro
    • 2
  1. 1.Escola Secundária de Jaime CortesãoCoimbraPortugal
  2. 2.Department of Chemical EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations