Behavioral Modeling of Complex Heterogeneous Microsystems

  • Peter Schwarz
  • Joachim Haase
Chapter

Abstract

A general mathematical description of the terminal behavior of subsystems is discussed. It allows to combine different modeling methods, e. g. network models, block models, and bondgraphs together. The resulting equations can be solved with a general network analysis program. This approach is effectively applied in modeling electrical as well as non-electrical subsystems. Extensions to digital and time-discrete subsystems are possible. Therefore, modeling the terminal behavior of subsystems is the basis for simulation of heterogeneous systems. Extensions to digital and time-discrete subsystems are possible. Therefore, modeling the terminal behavior of subsystems is the basis for simulation of complex microsystems.

Keywords

Acceleration Sensor Bond Graph Hardware Description Language Recursive Convolution Microsystem Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BoD87]
    Box, G.E.P.; Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, 1987.Google Scholar
  2. [Ce191]
    Cellier, F. E.: Continous System Modeling. Berlin: Springer-Verlag, 1991.CrossRefGoogle Scholar
  3. [CHS96]
    Clauss, C.; Haase, J.; Schwarz, P.: An approach to analogue behavioural modelling. Proc. VHDL User Forum Europe, Dresden, 1996, pp. 85–96.Google Scholar
  4. [Ecc96]
    Eccardt, P.C. et al.: Coupled finite element and network simulation for microsystem components. Proc. MICRO SYSTEM Technologies (MST’96), VDI-Verlag, Potsdam 1996, 145–150.Google Scholar
  5. [GeD97]
    Gerlach, G.; Dötzel, W.: Grundlagen der Mikrosystemtechnik. Hanser-Verlag, München 1997.Google Scholar
  6. [Ise92]
    Isermann, R.: Identifikation dynamischer Systeme 2. Berlin - Heidelberg: Springer-Verlag, 1992.Google Scholar
  7. [JaC92]
    Jackson, M. F.; Chua, L. O.: Device modeling by radial basis functions. IEEE Trans.CAS-I 39(1992)1, pp. 19–27.Google Scholar
  8. [KaR74]
    Kamopp, D. C.; Rosenberg, R. C.: System Dynamics: A Unified Approach. New York: Wiley 1974.Google Scholar
  9. [KoB61]
    Koenig, H. E.; Blackwell, W. A.: Electromechanical System Theory. McGraw-Hill, 1961.Google Scholar
  10. [Kle95]
    Klein, A. et al.: Two approaches to coupled simulation of complex microsystems. Proc. EUROSIM ‘85, Vienna 1995, 639–644.Google Scholar
  11. [Lei97]
    Leitner, T.: A new approach for semiconductor models basing on SPICE model equations. Proc. ECS’97, Bratislava, Slovakia, 1997, pp. 119–123.Google Scholar
  12. [Len71]
    Lenk, A.: Elektromechanische Systeme (3 vol.). Verlag Technik, Berlin 1971–1973.Google Scholar
  13. [LoN98]
    Lorenz, G.; Neul, R.: Network-typed modeling of micromachined sensor systems. Proc. MSM98, Santa Clara, pp. 233–238.Google Scholar
  14. [Mod]
    Modelica Design Group Documents. URL: http://www.modelica.org
  15. [Neu98]
    Neul, R. et al.: A modeling approach to include mechanical microsystem components into system simulation. Proc. Design, DATE’98, Paris, 1998, pp. 510–517.Google Scholar
  16. [Ngu94]
    Nguyen, T. V.: Recursive convolution and discrete time domain simulation of lossy coupled transmission lines. IEEE Trans. CAD 13(1994)10, pp. 1301–1305.Google Scholar
  17. [Par97]
    Parodat, S.: MARABU–Ein Werkzeug zur Approximation nichtlinearer Kennlinien mit radialen Basisfunktionen. Proc. 6. Workshop „Methoden und Werkzeuge zum Entwurf von Mikrosystemen“, Paderborn, Dezember 1997, pp. 49–58.Google Scholar
  18. [Rei85]
    Reibiger, A.: On the terminal behaviour of networks. Proc. ECC1“D `85, Prague, September 1985, pp. 224–227.Google Scholar
  19. [ReS76]
    Reinschke, K.; Schwarz, P.: Verfahren zur rechnergestützten Analyse linearer Netzwerke. Akademie-Verlag, Berlin 1976.MATHGoogle Scholar
  20. [SAW97]
    Senturia, S.; Aluni, N. R.; White, J.: Simulating the behavior of MEMS devices: computational methods and needs. IEEE Trans. Computational Science and Engineering, January 1997, 30–54.Google Scholar
  21. [Sch84]
    Schwarz, H. R.: Methode der finiten Elemente. Stuttgart: Teubner, 1984.CrossRefGoogle Scholar
  22. [Sch93]
    Schwab, A. J.: Begriffswelt der Feldtheorie. Berlin: Springer-Verlag, 1993.Google Scholar
  23. [SzR98]
    Szekely, V.; Rencz, M.: Fast field solver for thermal and electrostatic analysis. Proc. DATE’98, Paris 1998, 518–523.Google Scholar
  24. [Tho90]
    Thoma, J. U.: Simulation by Bondgraphs. Berlin: Springer-Verlag, 1990.CrossRefGoogle Scholar
  25. [VHDL]
    IEEE DASC 1076.1 WG Documents. URL:http://www.vhdl.org/analog
  26. [VoH95]
    Voll, I.; Haase, J.: Rekursives Faltungsmodell für ein allgemeines Netzwerksimula-tionsprogramm. 40. Intern. Wiss. Kolloquium, Ilmenau, 1995, vol. 3, pp. 269–274.Google Scholar
  27. [VoW97]
    Voigt, P.; Wachutka, G.: Electro-fluidic microsystem modeling based on Kirchhoffian network theory. Proc. Transducer `97Google Scholar
  28. [Wac95]
    Wachutka, G.: Tailored modeling: a way to the `virtual microtransducer fab’ ? Sensor and Actuators A 46–47 (1995), pp. 603–612.CrossRefGoogle Scholar
  29. [WCS97]
    Wünsche, S.; Clauß, C.; Schwarz, P.; Winkler, F.: Microsystem design using simulator coupling. Proc. EDandTC `97, Paris, 1997, pp. 113–118.Google Scholar
  30. [Wün98]
    Wünsche, S.: Ein Beitrag zur Einbeziehung thermisch-elektrischer Wechselwirkungen in den Entwurfsprozeß integrierter Schaltungen. Dissertation TU Chemnitz, 1998.Google Scholar
  31. [ZiT89]
    Zienkiewicz, O. C.; Taylor, R. L.: The Finite Element Method (2 vol.). McGraw-Hill, New York 1989 and 1991Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Peter Schwarz
    • 1
  • Joachim Haase
    • 1
  1. 1.Fraunhofer Institut für Integrierte Schaltungen (IIS) ErlangenAußenstelle EAS DresdenDresdenGermany

Personalised recommendations