Circuits and Applications

  • M. Jamal Deen
  • F. Javier De la Hidalga-W
Chapter

Abstract

Over that past four decades, the trend in the electronic industry has been to increase functional density and system performance, and to decrease cost with time. This has largely been made possible by the down-scaling of device dimensions, increased integration densities and improved fabrication technologies. However, the continued down-scaling of devices and interconnections is expected to meet technological and physical limitations, due to, for example, proper device operation or heat removal considerations. In fact, the continued reduction of the device dimensions (for example field-effect transistors, FETs), will not lead to improvements beyond a certain short channel length because of parasitic effects, saturation velocity effects, and high field effects, and because delays at the system level will be dominated by interconnection time constants (which do not scale with geometries) and problems associated with the increasing interconnection current densities due to their decreasing cross-sectional areas. Rather, improvements in the speed of high performance systems demand greater increases in device density than device speed, but this in turn leads to power density limitations. Thus, unless novel chip architectures, creative device and process designs, and revolutionary devices such as quantum-based devices are used, other means for achieving high speed/high density integrated circuits that are not limited by interconnection delays must be found. One approach to achieving high performance circuits and systems is to operate them at cryogenic temperatures, and it is this approach that is described in this chapter.

Keywords

Supply Voltage Power Dissipation Dark Current Modulation Transfer Function Cryogenic Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Deen, Cryogenic Operation of CMOS-based Microsystems and Computers, Microprocessors and Microsystems, Vol. 13(4), pp. 245–253 (May 1989).Google Scholar
  2. [2]
    M.J. Deen, Low Temperature MOS Microelectronics — Opportunities and Challenges, 35th Annual Technical Meeting of the Society of Engineering Science — Symposium on Giga Scale Integration Technology, Pullman, Washington, 13 pages (27–30 September 1998).Google Scholar
  3. [3]
    M.J. Deen, Low Temperature Microelectronics: Opportunities and Challenges, Proceedings of the Symposium on Low Temperature Electronic Device Operation (Proceedings Volume 91–14), Editors, D. Foty, N. Saks, S. Raider and G. Oleszek, Electrochemical Society Press, Penington, New Jersey, pp. 25–38 (1991).Google Scholar
  4. [4]
    M.J. Deen, Low Temperature Electronics, Low Temperature Engineering and Cryogenics Conference, (LTEC 90), Southampton, England, pp. 09.1.1–09.1.8 (17–19 July, 1990)Google Scholar
  5. [5]
    E.A. Gutierrez, M.J. Deen and C. Claeys, Eds., Low Temperature Electronics, Physics, Devices, Circuits and Applications, Academic Press, New York (2000).Google Scholar
  6. [6]
    F. Balestra and G. Ghibaudo, Eds., Device and Circuit Cryogenic Operation for Low Temperature Electronics, Kluwer Academic Press, New York (2000).Google Scholar
  7. [7]
    R.W. Keyes, E.P. Harris and K.L. Konnerth, The Role of Low Temperatures in the operation of Logic Circuitry, Proceedings IEEE, Vol. 58(12), pp. 1914–1932 (December 1970).Google Scholar
  8. [8]
    R.K. Kirschman, Low Temperature Electronics, IEEE Circuits and Devices Magazine, Vol. 6(2), pp. 12–24 (March 1990).Google Scholar
  9. [9]
    S.K. Tewksbury, Attojoule MOSFET Logic Devices Using Low Voltage Swings and Low Temperature, Solid-State Electronics, Vol. 28(5), pp. 255–276 (March 1985).Google Scholar
  10. [10]
    P.M. Solomon, Proc IEEE, Vol. 70, 489 (1982).Google Scholar
  11. [11]
    R.K. Kirschman, Ed, Low-Temperature Electronics, IEEE Press Book, New York (1986).Google Scholar
  12. [12]
    S.I. Raider, R.K. Kirschman, H. Hayakawa and H. Ohta, Eds, Proc Symp Low Temp El & High Temp Superconductors, Electrochem Soc Press, New Jersey (1988).Google Scholar
  13. [13]
    S.Y. Chou, D.A. Antoniadis and H.I. Smith, IEEE Trans. Electron Device Letters, Vol. 6, 665 (1985).Google Scholar
  14. [14]
    D.M. Carlson, D.C. Sullivan, R.E. Bach and D.R. Resnick, The ETA10 Liquid Nitrogen Cooled Supercomputer System, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1404–1413 (August 1989).Google Scholar
  15. [15]
    J.D. Cressler, D.D. Tang, K. Jenkins, G.P. Li and E.S. Yang, On the Low temperature Static and Dynamic Properties of High Performance Silicon Bipolar Transistors, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1489–1502 (August 1989).Google Scholar
  16. [16]
    J.M. Stork, D.L. Haramee, B.S. Meyerson, T.N. Nguyen, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1503–1509 (August 1989).Google Scholar
  17. [17]
    M.J. Deen and Jing Wang, Design Considerations for the Operation of CMOS Inverters at Cryogenic Temperatures, Proceedings of the Symposium on Low Temperature Electronics and High Temperature Superconductors, Proc. Vol. 88–9, Eds S.I. Raider, R. Kirschman, H. Hayakawa and H. Ohta, Electrochemical Society Press, New Jersey, pp. 108–116 (1988).Google Scholar
  18. [18]
    T.J. Drummond, W.T. Masselink and H. Morkoc, Modulation-Doped GaAs/(Al, Ga)As Heterojunction Field-Effect Transistors: MOSFETs, Proceedings IEEE, Vol. 74(6), pp. 773–822 (June 1986).Google Scholar
  19. [19]
    R.A. Kiehl, M.A. Scontras, D.F. Widiger and W.M. Kwapien, The Potential of Complementary Heterostructure FET ICs, IEEE Trans. Electron Devices, Vol. 34(12), pp. 2412–2421 (December 1987).Google Scholar
  20. [20]
    B.G. Bosch, Gigabit Electronics, Proceedings IEEE, Vol. 67(3), pp. 340–379 (March 1979).Google Scholar
  21. [21]
    S.M. Sze, Physics of Semiconductor Devices, 2nd Ed, Wiley, New York (1981).Google Scholar
  22. [22]
    R.C. Longsworth and W.A. Steyert, Technology for Liquid Nitrogen Cooled Computers, IEEE Trans El Dev, Vol. 34(1), pp. 4–7 (January 1987).Google Scholar
  23. [23]
    R.K. Kirschman, Low Temperature Electronics for Cryogenic Instrumentation, Low Temperature Technology, Vol. 1, Issue 2, (April, 1990).Google Scholar
  24. [24]
    T. Hardy, M.J. Deen and R. Murowinski, Effects of Radiation Damage in Scientific Charge Coupled Devices, Advances in Imaging and Electron Physics, Vol. 106, Ed. P. Hawkes, pp. 1–96, Academic Press, New York (1999).Google Scholar
  25. [25]
    J. Laramee, M.J. Aubin and D.N. Cheeke, Behavior of CMOS Inverters at Cryogenic Temperatures, Solid-State Electronics, Vol. 28(5), pp. 453–6 (May 1985).Google Scholar
  26. [26]
    A. Kamgar and R.L. Johnston, Delay Times in Si MOSFETS in the 4. 2–400K Temperature Range, Solid-State Electronics, Vol 26(4), pp. 291–4 (April 1983).Google Scholar
  27. [27]
    M.J. Deen, Cryogenic Temperature Dependence of the Voltage Transfer Characteristics of CMOS Inverters, Solid-State Electronics, Vol. 31(8), pp. 1299–1308 (August 1988).Google Scholar
  28. [28]
    M.J. Deen, Digital Characteristics of CMOS Devices at Cryogenic Temperatures, IEEE Journal of Solid-State Circuits, Vol. SC-24(1), pp. 158–164 (February 1989).Google Scholar
  29. [29]
    M.J. Deen, Operational Characteristics of CMOS Op-Amps at Cryogenic Temperatures, Solid-State Electronics, Vol. 31(2), pp. 291–297 (February 1988).Google Scholar
  30. [30]
    P. Glories, A. Boudou, Y. L’Ecuyer, B. Doyle, P. Leclaire and P. Chantraine, A High Performance NMOS Adder Designed for Optimized Cryogenic Operation, IEEE Journal of Solid-State Circuits, Vol. SC-21(3), pp. 404–410 (June 1986).Google Scholar
  31. [31]
    S. Hanamura, M. Aoki, T. Masuhara, O. Minato, Y. Sakai and T. Hayashida, Low Temperature CMOS 8x8 Multipliers with Sub-10-ns Speeds, IEEE Trans. Electron Devices, Vol. 34(1), pp. 94–100 (January 1987)Google Scholar
  32. [32]
    W. Henkels, N.C.C. Lu, W. Hwang, T.V. Rajeevakumar, R.L. Franch, K.A. Jenkins, T.J. Bucelot, D.F. Heidel and M.J. Immediato, A 12-ns Low Temperature DRAM, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1414–1422 (August 1989).Google Scholar
  33. [33]
    T.J. Chappell, S.E. Schuster, B.A. Chappell, J.W. Allan, J.Y.C. Sun, S.P. Klepner, R.L. Franch, P.F. Greier and P.J. Restie, A 3. 5-ns/77K and 6. 2-ns/300K 64K CMOS RAM with ECL Interfaces, IEEE J. Solid-State Circuits, Vol. 24(4), pp. 859–868 (August 1989).Google Scholar
  34. [34]
    P. Wyns and R.L. Anderson, Low Temperature of Silicon Dynamic Random-Access Memories, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1423–1428 (August 1989).Google Scholar
  35. [35]
    R.C. Jaeger and T.N. Blalock, Quasi-static RAM Design for High performance Operation at Liquid Nitrogen Temperature, Cryogenics, Vol. 30, pp. 1030–1035 (December 1990).Google Scholar
  36. [36]
    W. Henkels, D.S. Wen, R.L. Franch, T.J. Bucelot, C.W. Long, J.A. Bracchitta, W.J. Cote, G.B. Bonner, Y. Taur and R.H. Dennard, A 4MB Low-Temperature DRAM, IEEE J. Solid-State Circuits, Vol. 26(11), pp. 1519–1529 (November 1991).Google Scholar
  37. [37]
    K. Nishiuchi, N. Kobayashi, S. Kuroda, S. Notomi, T. Mimura, M. Abe and M. Kobayashi, A Subnanosecond HEMT 1-kbit Static RAM, IEEE J. Solid-State Circuits, Vol. 21(5), pp. 869–874 (October 1986).Google Scholar
  38. [38]
    D. Gupta, B. Amrutur, E. Terzioglu, U. Ghoshal, M.R. Beasley and M. Horowitz, Optimization of Hybrid JJ/CMOS Memory Operating Temperatures, IEEE Trans. Applied Superconductivity, Vol. 7(2), pp. 3307–3310 (June 1997).Google Scholar
  39. [39]
    Cryocoolers 8, Ed., R.G. Ross, Plenum Press, New York (1995).Google Scholar
  40. [40]
    M.J. Deen, C.Y. Chan and N. Fong, Operational Characteristics of a CMOS Microprocessor System at Cryogenic Temperatures, Cryogenics, Vol. 28(5), pp. 336–338 (May 1988).Google Scholar
  41. [41]
    L. Colonna-Romano and D.R. Deverell, Operation of a CMOS Microprocessor While Immersed in Liquid Nitrogen, IEEE J. Solid-State Circuits, Vol. 21(3), pp. 491–2 (June 1992).Google Scholar
  42. [42]
    Y. Taur, Y.J. Miki, D.J. Frank, H.S. Wong, D.A. Buchanan, S.J. Wind, S.A. Rishton, G.A. Sai-Halasz and E.J. Nowak, CMOS Scaling Into the 21st century: 0.1 μm and Beyond, IBM Journal of Research and Development, Vol. 39(1/2), pp. 245–259 (January/march 1995).Google Scholar
  43. [43]
    Y Taur and E.J. Nowak, Proceedings of the IEDM, pp. 215–218 (1997).Google Scholar
  44. [44]
    B.J. Schebler, Packaging of Electronics for use at Cryogenic Temperatures, IEEE WESCON (Western Electronics Show and Convention), paper 1/2, p. 1 (1969).Google Scholar
  45. [45]
    F.J. Low, Application of JFETs to Low Background Focal Planes in Space, Proc. SPIE (Society of Photo-Optical Instrumentation Engineers), Vol. 364, p. 141 (1983).Google Scholar
  46. [46]
    D.H. Seib, Cryogenic Electronics for Infrared Focal Plane Arrays, Proc. Symp. on Low Temperature Electronics and High Temperature Superconductivity, S. Raider, R. Kirschman, H. Hayakawa, and H. Ohta, Eds., The Electrochemical Soc., p. 499 (1988).Google Scholar
  47. [47]
    P. Kolev, M.J. Deen, H.C. Liu, J. Li, M. Buchanan and Z.R. Wasilewski, Thermally Activated Current-Voltage Asymmetry in Quantum Well Inter-Subband Photodetectors, Canadian Journal of Physics, Vol. 74, pp. S9–S15 (1996).Google Scholar
  48. [48]
    M.G. Rao and R.G. Scurlock, Cryogenic Instrumentation with Cold Electronics-A Review, Advances in Cryogenic Engineering 31, Ed. by R.W. Fast, p. 1211, Plenum Press (1986).Google Scholar
  49. [49]
    L.M. Reyneri, Analog Multiplexer for Cryogenic Applications, Cryogenics, Vol. 29, No. 5, p. 540 (1989).Google Scholar
  50. [50]
    A. Alessandrello, C. Brofferio, D.V. Camin, A. Giuliani, G. Pessina, and E. Previtali, Gallium-Arsenide Charge-Sensitive Preamplifier for Operation in a Wide Low-Temperature Range, Nuclear Instruments and Methods in Physics Research, Vol. A289, No. 3, p. 426 (1990).Google Scholar
  51. [51]
    A.T. Lee, Broadband Cryogenic Preamplifiers incorporating GaAs MESFETs for use with Low-Temperature Particle Detectors, Review of Scientific Instruments, Vol. 60, No. 10, p. 3315 (1989).Google Scholar
  52. [52]
    F. Bordoni, G. Maggi, A. Ottaviano, and G.V. Pallotino, Very Low Noise Cooled Audiofrequency Preamplifier for Gravitational Research, Review of Scientific Instruments, Vol. 52, No. 7, p. 1079 (1981).Google Scholar
  53. [53]
    J.F. Gregg, I.D. Morris, and M.R. Wells, Cryogenic GaAs MESFET Magnetic Resonance Spectrometer for use from 500 MHz to 3 GHz, Journal of Physics E: Scientific Instruments, Vol. 20, p. 1223 (1987).Google Scholar
  54. [54]
    M.G. Richards, A.R. Andrews, C.P. Lusher, and J. Schratter, Cryogenic GaAs FET Amplifiers and their use in NMR Detection, Review of Scientific Instruments, Vol. 57(3), p. 404 (1986).Google Scholar
  55. [55]
    T. Takeda, T. Haeiwa, E. Kita, and A. Tasaki, Low Temperature Characteristics of GaAs FETs (3SK97), 3SK121) for UHF SQUID, Japanese J. Applied Physics, Vol. 27(1), p. 161 (1988).Google Scholar
  56. [56]
    J. Seijnaeve, B. Dierickx, D. Scheffer and A. Alaerts, Performance of the Cryogenic read-out Amplifiers for FIRST’S Stressed Ge: Ga Array, Low Temperature Electronics and High Temperature Superconductivity IV, Proceedings, Eds. C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown, and R.K. Kirschman, PV 97-2, p. 358, The Electrochem. Soc., (1997).Google Scholar
  57. [57]
    V. Umansky, G. Bunin, K. Gartsman, C. Sharman, R. Almuhannad, M. Heiblum, I. Bar-Joseph and U. Meriav, All-GaAs/AlGaAs Readout Circuit for Quantum Well Infrared Photodetector Focal Plane Array, IEEE Trans. Electron Devices, Vol. 44(11), pp. 1807–1812 (November 1997).Google Scholar
  58. [58]
    M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo and N. Toubouchi, 4-Bandx4096 Element Schottky-Bairier Infrared Linear Image Sensor, IEEE Trans. Electron Devices, Vol. 38(5), pp. 1131–1135 (May 1991).Google Scholar
  59. [59]
    B. Zetterlund and A.J. Stekl, Low Temperature Operation of Silicon Surface Channel Charge-Coupled Devices, IEEE Trans. Electron Devices, Vol. 34(1), pp. 39–51 (January 1987).Google Scholar
  60. [60]
    B. Jaggi and M.J. Deen, Low Temperature Operations of Silicon Charge Coupled Devices for Imaging Applications, Proceedings of the Symposium on Low Temperature Electronics and High Temperature Superconductors, Proc. Vol. 88–9, Eds S.I. Raider, R. Kirschman, H. Hayakawa and H. Ohta, Electrochemical Society Press, New Jersey, pp. 579–589 (1988)Google Scholar
  61. [61]
    R. Murowinski and M.J. Deen, Low Temperature Characteristics of Large Array Charge Coupled Devices, in Proceedings of the Symposium on Low Temperature Electronics and High Temperature Superconductivity, Proceedings Volume 93-22), Editors, S. Raider, C. Claeys, D. Foty, and T. Kawai, Electrochemical Society Press, Penington, New Jersey, pp. 209–220 (1993).Google Scholar
  62. [62]
    R. Murowinski, G. Linzhuang and M.J. Deen, Effects of Radiation Damage and Temperature on CCD Noise for the Lyman FUSE Mission, Proc SPIE Photonics for Space Environments — OE/Aerospace Science and Sensing, Vol 1953, Orlando, Florida, pp. 71–81 (12–16 April, 1993).Google Scholar
  63. [63]
    R. Murowinski, G. Linzhuang and M.J. Deen, The Effects of Space Radiation Damage and Temperature on the Noise in CCDs and LDD MOS Transistors, IEEE Transactions on Nuclear Science, Vol 40(3), pp. 288–294 (July 1993)Google Scholar
  64. [64]
    R. Murowinski, M.J. Deen and T. Hardy, Charge Transfer Efficiency in Low Temperature CCDs, Proceedings of the Symposium on Low Temperature Electronics and High Temperature Superconductivity, Proceedings Volume 95–9, Eds. C. Claeys, S.I. Raider, R. Kirschman and W.D. Brown, The Electrochemical Society Press, New Jersey, pp. 299–314 (1995).Google Scholar
  65. [65]
    R. Murowinski and M.J. Deen, CCDs for the Lyman FUSE Mission, Applications of Photonics Technology, Eds., G.A. Lampropoulos, J. Chrostowski and R.M. Measures, Plenum Press, New York, pp. 191–196 (1995).Google Scholar
  66. [66]
    Low Temperature Electronics and High Temperature Superconductivity (Fourth International Symposium), Eds., C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown and R.K. Kirschman, Electrochemical Society Series, Penington, New Jersey, Proceedings Volume PV-97-2, 322 pages (1997)Google Scholar
  67. [67]
    T. Hardy, R. Murowinski and M.J. Deen, Charge Transfer Efficiency in Proton Damaged CCDs, IEEE Transactions on Nuclear Science, Vol. 45(2), pp. 154–163 (April 1998).Google Scholar
  68. [68]
    T. Hardy, M.J. Deen and R.M. Murowinski, Low Frequency Noise in Proton Damaged LDD MOSFETs, IEEE Transactions on Electron Devices, Vol. 46(7), pp. 1339–1346 (June 1999).Google Scholar
  69. [69]
    T. Hardy, M.J. Deen and R. Murowinski, Effects of Radiation Damage in Scientific Charge Coupled Devices, Advances in Imaging and Electron Physics, Vol 106, Editor P. Hawkes, Academic Press, Vol. 106, pp. 1–96 (1999).Google Scholar
  70. [70]
    W.S. Boyle and G.E. Smith, “Charge Coupled Semiconductor Devices,” Bell Systems Technical Journal Vol. 49, pp. 587–593 (1970).Google Scholar
  71. [71]
    M.F. Tompsett, G.F. Amelio, and G.E. Smith, Bell Systems Technical Journal, Vol 49, pp. 593 (1970).Google Scholar
  72. [72]
    Ch.-K. Kim, in Charge-Coupled Devices and Systems, M.J. Howes and D.V. Morgan, Editors, Wiley-Interscience, New York, p. 57 (1979).Google Scholar
  73. [73]
    J. Janesick, T. Elliott, A. Dingizian, J. Gunn, R. Bredthauer, C. Chandler and J. Westphal, New Advancements in Charge-Coupled Device Technology — Sub-electron Noise and 4096x4096 Pixel CCDs, in CCDs in Astronomy, G.H. Jacoby, Editor, Astronomical Society of the Pacific Conference Series Vol. 8, Brigham Young University Press, Utah, pp. 18–39 (1989).Google Scholar
  74. [74]
    P. Kolev, T. Hardy, M.J. Deen and R. Murowinski, The Use of Constant-Resistance DLTS to Study Proton Radiation Damage in CCD Output MOSFETs, Proceedings of the Symposium on Diagnostic Techniques for Semiconductor Materials and Devices, Proceedings Vol. 97-12, P. Rai-Choudhury, J. Benton and D. Schroder, Editors, The Electrochemical Society Press, New Jersey, 12 pages (1997).Google Scholar
  75. [75]
    P. Kolev, T. Hardy, M.J. Deen and R. Murowinski, Constant-Resistance DLTS in CCD Output MOSFETs, Journal of the Electrochemical Society, Vol. 145(9), pp. 3258–3264 (September 1998).Google Scholar
  76. [76]
    B.E. Burke, S.A. Gajar, Dynamic Suppression of Interface State Dark-Curent in Buried-Channel CCDs, IEEE Trans. Electron Devices, Vol. 38(2), pp. 285–290 (1991).Google Scholar
  77. [77]
    W.F. Kosonocky and K.H. Zaininger, in Charge-coupled Devices and Systems, M.J. Howes and D.V. Morgan, Editors, Wiley-Interscience, New York, p. 218 (1979).Google Scholar
  78. [78]
    M.M. Blouke and D.A. Robinson, A Method for Improving the Spatial Resolution of Frontside-Illuminated CCDs, IEEE Transactions on Electron Devices, Vol. 28, pp. 251–256 (1981).Google Scholar
  79. [79]
    J. Janesick, History and Advancements of Large Area Array Scientific CCD Imagers, in the notes from the short course An Introduction to Scientific Charge Coupled Devices, (1991).Google Scholar
  80. [80]
    I.H. Hopkins, G.R. Hopkinson, and B. Johlander, Proton-Induced Charge Transfer Degradation in CCDs for Near-Room Temperature Applications, IEEE Transactions on Nuclear Science, Vol. 41(6), pp. 1984–91 (1994).Google Scholar
  81. [81]
    R. Murowinski, G. Linzhuang, M.J. Deen, Effects of Space Radiation Damage and Temperature on CCD Noise for the Lyman FUSE Mission, in Photonics for Space Environments, E. Taylor, Editor, Proc. SPIE, Vol. 1953, pp. 71–81 (1993).Google Scholar
  82. [82]
    T. Hardy, R. Murowinski and M.J. Deen, Charge Transfer Efficiency in Proton Damaged CCDs, Proceedings of the ESO Workshop, Optical Detectors for Astronomy, J.W. Beletic and P. Amico, Editors, Kluwer ASSL Series, (1997).Google Scholar
  83. [83]
    A. Mohsen and M. Tompsett, The Effects of Bulk Traps on the Performance of Bulk Channel Charge-Coupled Devices, IEEE Transactions on Electron Devices, Vol. 21(11), pp. 701–712 (1974).Google Scholar
  84. [84]
    I. Zayer, I. Chapman, D. Duncan, G. Kelly, K. Mitchell, Results from Proton Damage Tests on the Michelson Doppler Imager CCD for SOHO, Charge Coupled Devices and Solid State Optical Sensors III, M.M. Blouke, Editor, Proc. SPIE, Vol. 1900, pp. 97–107 (1993).Google Scholar
  85. [85]
    N.S. Saks, Investigation of Bulk Electron Traps Created by Fast Neutron Irradiation in a Buried Channel CCD, IEEE Transactions on Nuclear Science, Vol. 24, pp. 2153–57 (1977).Google Scholar
  86. [86]
    J. Janesick, G. Soli, T. Elliott, S. Collins, The Effects of Proton Damage on Charge-Coupled Devices, in Charge Coupled Devices and Solid State Optical Sensors II, Proc. SPIE, Vol. 1447 pp. 87–108 (1991).Google Scholar
  87. [87]
    M.S. Robbins, T. Roy, and S.J. Watts, Degradation of Charge Transfer Efficiency of a Buried Channel Charge Coupled Device due to Radiation Damage by a Beta Source, RADECS 91, IEEE Proceedings, Vol. 15, pp. 327–332 (1992).Google Scholar
  88. [88]
    A.D. Holland, The Effect of Bulk Traps in Proton Irradiated EEV CCDs, Nuclear Instruments and Methods in Physics Research, Vol. A326, pp. 335–343 (1993).Google Scholar
  89. [89]
    I.H. Hopkins, G.R. Hopkinson, and B. Johlander, Proton-Induced Charge Transfer Degradation in CCDs for Near-Room Temperature Applications, IEEE Transactions on Nuclear Science, Vol. 41(6), pp. 1984–91 (1994).Google Scholar
  90. [90]
    K.C. Gendreau, G. Prigozhin, R. Huang and M. Bautz, A Technique to Measure Trap Characteristics in CCDs Using X-rays, IEEE Transactions on Electron Devices, Vol. 42(11), pp. 1912–17 (1995).Google Scholar
  91. [91]
    N. Meidinger and L. Strüder, Radiation Hardness of pn-CCDs for X-ray Astronomy, IEEE Transactions on Nuclear Science, Vol. 42(6), pp. 2066–73 (1995).Google Scholar
  92. [92]
    S. Coffa, V. Privitera, F. Priolo, S. Libertino, and G. Mannino, Depth Profiles of Vacancy-and Interstitial-type Defects in MeV Implanted Si, Journal of Applied Physics, Vol. 81(4), pp. 1639–44 (1997).Google Scholar
  93. [93]
    B.G. Svensson, C. Jagadish, and J.S. Williams, Generation of Point Defects in Crystalline Silicon by MeV Heavy Ions: Dose Rate and Temperature Dependence, Physical Review Utters, Vol. 71(12), pp. 1860–63 (1993).Google Scholar
  94. [94]
    J.L. Benton and L.C. Kimerling, Capacitance Transient Spectroscopy of Trace Contamination in Silicon, Journal of the Electrochemical Society, Vol. 129, pp. 2098–2102 (1982).Google Scholar
  95. [95]
    P.R. Jordan, A.P. Oates, S.M. Tulloch, D.J. Ives and X. Gao, New Generation CCDs-Applications and Performance Results, unpublished work (1999).Google Scholar
  96. [96]
    L.J. Kozlowski, K. Vural, S.A. Cabelli, A. Chen, D.E. Cooper, G. Bostrup, C. Cabelli, K. Hoddap, D. Hall and W.E. Kleinhans, HgCdTe 20482 FPA for Infrared Astronomy: Development Status, SPIE Conf. on Infrared Astronomical Instrumentation, Proc. SPIE Vol. 3354, pp. 66–76 (1998).Google Scholar
  97. [97]
    T.D. Hardy, Visible Wavelength Detectors for NGST, unpublished work, DAO, NRC (2000).Google Scholar
  98. [98]
    http://www.rsc.rockwell.com/mct_fpa/HyViSi/HyViSi.htmlGoogle Scholar
  99. [99]
    http://www.rsc.rockwell.com/mct_fpa/Hawaii-2/haw-2.htmlGoogle Scholar
  100. [100]
    B.F. Levine, Quantum-Well Infrared Photodetectors, Journal of Applied Physics, Vol. 78(8), pp. R1–R81 (October 1993).Google Scholar
  101. [101]
    LJ Kozlowski, GM Williams, GJ Sullivan, CW Farley, RJ Anderson, J Chen, DT Cheung, WE Tennant and RE DeWames, LWIR 128x128 GaAs/AlGaAs Multiple Quantum Well Hybrid Focal Plane Array, IEEE Trans. Electron. Devices, Vol. 38(5) pp. 1124–1130 (1991).Google Scholar
  102. [102]
    B.F. Levine et al., Semicond. Sci. Technol. 6 (1991) c114Google Scholar
  103. [103]
    CG Bethea, BF Levine, VO Shen, RR Abbott and SJ Hseih, 10-μm GaAs/AlGaAs Multiquantum Well Scanned Array Infrared Imaging Camera, IEEE Trans. Electron. Devices Vol. 38(5), pp. 1118–1123 (1991).Google Scholar
  104. [104]
    C G Bethea, B F Levine, M T Asom, R E Leibenguth, J W Stayt, K G Glogovsky, R A Morgan, J D Blackwell and W J Parrish, Long Wavelength Infrared 128x128 AlxGa1-xAs/GaAs Quantum Well Infrared Camera and Imaging System, IEEE Trans. Electron. Devices, Vol. pp. 1957–1963 (1993).Google Scholar
  105. [105]
    S.D. Gunapala, J.S. Park, G. Sanisi, T.L. Lin, J.K. Liu, P.D. Maker, R.E. Muller, C.A. Shott and T. Hoelter, 15-μm 128x128 GaAs/AlxGa1-xAs Quantum Well Infrared Photodetector Focal Plane Array Camera, IEEE Trans. Electron Devices, Vol. 44(1), pp. 45–50 (January 1997).Google Scholar
  106. [106]
    S.D. Gunapala, J.K. Liu, J.S. Park, M. Sundaram, C.A. Shott, T. Hoelter, T.L. Lin, S.T. massie, P.D. Maker, R.E. Muller and G. Sanisi, 9-μm Cutoff 256x256 GaAs/AlxGa1-xAs Quantum Well Infrared Photodetector Hand-Held Camera, IEEE Trans. Electron Devices, Vol. 44(1), pp. 51–57 (January 1997).Google Scholar
  107. [107]
    S.D. Gunapala, S.V. Bandara, J.K. Liu, W Hong, M. Sundaram, P.D. Maker, R.E. Muller, C.A. Shott and R. Carralejo, Long-Wavelength 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector Snap-Shot Camera, IEEE Trans. Electron Devices, Vol. 45(9), pp. 1890–1895 (September 1998).Google Scholar
  108. [108]
    C.J. Chen, K.K. Choi, W.H. Chang and D.C. Tsui, Two-Color Corrugated Quantum Well Infrared Photodetector for Remote Temperature Sensing, Applied Physics Letters, Vol. 72(1), pp. 7–9 (January 1998).Google Scholar
  109. [109]
    S.Y. Wang and C.P. Lee, Normal Incident Long-Wavelength Quantum Well Infrared Photodetectors Using Electron Intersubband Transitions, Applied Physics Letters, Vol. 71(1), pp. 119–121 (July 1997).Google Scholar
  110. [110]
    S.V. Bandara, S.D. Gunapala, J.K. Liu, E.M. Luong, J.K. Liu, J.M. Mumolo, W. Hong, D.K. Sengupta and M.J. McKelvey, 10–16 μm Broadband Quantum Well Infrared Photodetector, Applied Physics Letters, Vol. 72(19), pp. 2427–2429 (May 1998).Google Scholar
  111. [111]
    A.G.U. Perera, W.Z., Shen, S.G. Matsik, H.C. Liu, M. Buchanan, W.J. Schaff, GaAs/ AlGaAs Quantum Well Photodetectors with a Cut-off Wavelength at 28 μm, Applied Physics Letters, Vol. 72(13), pp. 1596–1599 (March 1998).Google Scholar
  112. [112]
  113. [113]
    R.L. Whitney, K.F. Cuff and F.W. Adams, Longwavelength Infrared Photodetectors Based on Intersubband Transistions in III–V Semiconductor Quantum Wells (chapter 3), in Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors, M.O. Manasreh, Editor, pp. 55–109, Artech House, Boston (1993).Google Scholar
  114. [114]
    W.F. Kosonocky, F.V. Shallcross, T.S. Villani and J. V Groppe, 160x244 Element PtSi Schottky-Barrier IR-CCD Image Sensor, IEEE Trans. Electron. Devices 32(8) pp. 1564–1573 (August 1985).Google Scholar
  115. [115]
    J.R. Tower, L.E. Pellon, B.M. McCarthy, H. Elabd, A.G. Moldovan, W.F. Kosonocky, J.E. Kalshoven and D. Tom, Shortwave Infrared 512x2 Line Sensor for Earth Resources Applications, IEEE Trans. Electron. Devices 32(8) pp. 1574–1583 (August 1985).Google Scholar
  116. [116]
    M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo and N. Toubouchi, 4-Bandx4094-Element Schottky Barrier Infrared Linear Image Sensor, IEEE Trans. Electron. Devices 38(5) pp. 1131–1135 (May 1991).Google Scholar
  117. [117]
  118. [118]
  119. [119]
  120. [120]
    CH Kuan, RM Lin, SF Tang and TP Sun, Analysis of the Dark Current in the Bulk of InAs Diode Detectors, J. Appl. Phys. 80(9) (1996) 5454–5458Google Scholar
  121. [121]
    LA Bunz, EK Track, SV Rylov, P Fei-Yuh and G Morse, Fiber-Optic Input and Output for Superconducting Circuits, Superconductive Devices and Circuits Workshop, Los Angeles, CA, Jan., 1994; also in Proc. SPIE, 1994, vol 2160, pp. 229–236Google Scholar
  122. [122]
    K Nakahara, H Nagaishi, H Hasagawa, S Kominami, H Yamada and T Nishino, Optical Input/Output Interface System for Josephson Junction Integrated Circuits, IEEE Trans. Appl. Superconductivity, vol. 4, pp. 223–227, Dec, 1994.Google Scholar
  123. [123]
    D.V. Camin, A 1 K Front-End Electronics for a Cryogenic Bolometric Detector, Nucl. Inst. and Meth. in Physics Res., Vol. A277, pp. 04–210, (1989).Google Scholar
  124. [124]
    A. Alessandrello, D.V. Camin, E. Fiorini and A. Giuliani, Phys. Lett., Vol. B202, p. 611, (1988).Google Scholar
  125. [125]
    T.J. Cunningham and M.J. Fitzsimmons, Advances in Discrete and Simple Amplifiers for Deep Cryogenic Read-Outs, Journal de Physique IV, Vol. 8, Proceedings, Eds. L. Brogiato, D.V. Camin and G. Pessina, Wolte-3, pp. Pr-127-Pr-3-130, (1998).Google Scholar
  126. [126]
    M.G. Richards, A.R. Andrews, C.P. Lusher and J. Schratter, Cryogenic GaAs FET Amplifiers and Their Use in NMR Detection, Rev. Sci. Instrum., Vol. 57, No. 3, pp. 404–409, (March 1986).Google Scholar
  127. [127]
    D.V. Camin, III–V Front-End Electronics-An Overview, presented at the Third International Workshop on GaAs and Related Compounds, San Miniato, Italy, SIS Pubblicazioni dei Labaratori Nazionali di Frascati (20–23 March, 1995).Google Scholar
  128. [128]
    V. Radeka, Low Noise Techniques in Detectors, Ann. Rev. Nucl. Part. Sci., Vol. 38, pp. 217–227 (1988).Google Scholar
  129. [129]
    See: Proceedings of the IV International Workshop on Low Temperature Detectors for Neutrinos and Dark Matter, Journal of Low Temperature Physics, Vol. 93, No. 3/4 (1993).Google Scholar
  130. [130]
    R.K. Kirschman, S.V. Lemoff, and J.A. Lipa, Evaluation of GaAs FETs for Cryogenic read-out, Proc. SPIE, Vol. 1684, pp. 110–130, Proc. Conference on Infrared Read-out Electronics, Orlando, Florida (21–22 April, 1992).Google Scholar
  131. [131]
    D.V. Camin, G. Pessina, E. Previtali and G. Ranucci, Low Noise Preamplifiers for 1 Kelvin Operation using Gallium-Arsenide MESFETs of Very Low 1/f Noise, Cryogenics, Vol. 29, No. 8, pp. 857–862 (1989).Google Scholar
  132. [132]
    B. Aubert, Performance of a Liquid Argon Electromagnetic Calorimeter with an Accordion Geometry, Nucl. Instr. and Meth. in Phys. Res., Vol. A309, pp. 438–449 (1991).Google Scholar
  133. [133]
    D.V. Camin, G. Pessina and E. Previtali, Front-End in GaAs, Nucl. Inst. and Meth. in Phys. Res., Vol. A315, pp. 385–392 (1992).Google Scholar
  134. [134]
    D.V. Camin, N. Fedyakin and G. Pessina, Monolithic Current-Sensitive Preamplifier for the Accordion LAr Calorimeter,” Nucl. Instr. and Meth. in Phys. Res., Vol. A360, pp. 153–157 (1995).Google Scholar
  135. [135]
    T.J. Cunningham and M.J. Fitzsimmons, GaAs Multiplexers for VLWIR Detector readout below 10 Kelvin, Low Temperature Electronics and High Temperature Superconductivity IV, Proceedings, Eds. C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown, and R.K. Kirschman, PV 97-2, pp. 347–357, The Electrochem. Soc. (1997).Google Scholar
  136. [136]
    T.J. Cunningham, R.C. Gee, E.R. Fossum and S.M. Baier, Deep Cryogenic Noise and Electrical Characterization of the Complementary Heterojunction Field-Effect TRansistor (CHFET), IEEE Trans. on Electron Dev., Vol. 41, No. 6, pp. 888–894 (1994).Google Scholar
  137. [137]
    M.W. Sinclair, W.E. Wilson, G.G. Moorey, RB. Sykes and R.J. Bolton, A Cryogenically Cooled Thirteen Beam, 21 cm Receiver Front-End, Low Temperature Electronics and High Temperature Superconductivity IV, Proceedings, Eds. C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown, and R.K. Kirschman, PV 97-2, pp. 336–346, The Electrochem. Soc. (1997).Google Scholar
  138. [138]
    O.D. Poustylnik, A.A. Maksyasheva, O.P. Golovchenko, E.N. Glukhova, E.N. Zdor, A.V. Onopchenko and Y.I. Kishenko, Super Low Noise Cryoelectronic Amplifier for Radio Astronomy and Spectroscopy in a 21. 0–23.0 GHz Range with Conversion of Frequency into 0.5–2.5 GHz, Journal de Physique IV, Vol. 8, Proceedings, Eds. L. Brogiato, D.V. Camin and G. Pessina, Wolte-3, pp. Pr-189-Pr-3-193 (1998).Google Scholar
  139. [139]
    K.H.G. Duh, W.F. Kopp, P. Ho, P.C. Chao, M.Y. Ko, P.M. Smith, J.M. Ballingall, J.J. Bautista and G.G. Ortiz, 32-GHz Cryogenically Cooled HEMT Low-Noise Amplifiers, IEEE Trans. Electron Devices, Vol. 36(8), pp. 1528–1535 (August 1989).Google Scholar
  140. [140]
    R. Lai, J.J. Bautista, B. Fujiwara, K.L. Tan, G.I. Ng, R.M. Dia, D. Streit, P.H. Liu, A. Freudental, J. Laskar, M.W. Popieszalski, An Ultra-Low Noise Cryogenic Ka-Band InGaAs/InAlAs/InP HEMT Front-End Receiver, IEEE Microwave and Guided Wave Letters, Vol. 4(10), pp. 329–331 (October 1994).Google Scholar
  141. [141]
    I. Lopez-Fernandez, J.D.G. Puyol, O.J. Homan and A.B. Cancio, Low-Noise Cryogenic X-band Amplifier Using Wet-Etched Hydrogen Passivated InP HEMT Devices, IEEE Microwave and Guided Wave Letters, Vol. 9(10), pp. 413–415 (October 1999).Google Scholar
  142. [142]
    N.R. Erikson, R.M. Grosslein, R.B. Erikson, S. Weinreb, AS Cryogenic Focal Plane Array for 85–115 GHz Using MMIC Preamplifiers, IEEE Trans. Microwave Theory and Techniques, Vol. 47(12), pp. 2212–2219 (December 1999).Google Scholar
  143. [143]
    J.W. Archer, O. Sevimli, M.W. Sinclair and R.G. Gough, GaAs MMICs for a Cryogenically Cooled, 80–110 GHz Planar Receiver Array, Low Temperature Electronics and High Temperature Superconductivity IV, Proceedings, Eds. C. Claeys, S.I. Raider, M.J. Deen, W.D. Brown, and R.K. Kirschman, PV 97-2, pp. 305–319, The Electrochem. Soc. (1997).Google Scholar
  144. [144]
    A. Alessandrello, C. Brofferio, D.V. Camin, A. Giuliani, G. Pessina and E. Previtali, Cryogenic Voltage-Sensitive Preamplifier Using GaAs MESFETs of Low 1/f Noise, Nucl. Instr. and Meth. in Phys. Res., Vol. A295, pp. 405–410 (1990).Google Scholar
  145. [145]
    N. Harada, A. Watanabe, Y. Awano, K. Hikosaka and N. Yokoyama, A Multigigahertz Josephson-Semiconductor Interface Circuit Using 77K Differential Monolithic HEMT Amplifier and 4.2-JJ High-Voltage Driver for Superconductor-Semiconductor Electronic Hybrid Systems, IEEE Journal Solid-State Circuits, Vol. 35(1), pp. 66–73 (January 2000).Google Scholar
  146. [146]
    U. Ghoshal, S.V. Kishore, A.R. Feldman, L. Huynh and T. Van Duzer, CMOS Amplifier Designs for Josephson-CMOS Interface Circuits, IEEE Trans. Applied Superconductivity, Vol. 59(2), pp. 2640–2643 (June 1995).Google Scholar
  147. [147]
    A.R. Feldman and T. Van Duzer, Hybrid Josephson-CMOS FIFO, IEEE Trans. Applied Superconductivity, Vol. 59(2), pp. 2636–2639 (June 1995).Google Scholar
  148. [148]
    H. Suzuki, T. Imamura and S. hasuo, Josephson Semiconductor Interface Circuit, Cryogenics, Vol. 30(12), pp. 1005–1008 (December 1990).Google Scholar
  149. [149]
    K Nakahara, H Nagaishi, H Hasagawa, S Kominami, H Yamada and T Nishino, Optical Input/Output Interface System for Josephson Junction Integrated Circuits, IEEE Trans. Appl. Supercond. Vol. 4(4), pp. 223–227 (1994).Google Scholar
  150. [150]
    GS Goryankin, RN Denisov, BA Ermakov, VA Markin, L Sh Oleïnikov and VI Ostanin, “Cryooptical Systems,” J. Optical Technol. Vol. 61(1) pp. 57–60 (1994).Google Scholar
  151. [151]
    H.P. Demroff, S. Babu, M.R. Bye, K.L. Coleman, N. Das, D.B. DeBra, RD. Ehrensberger Jr., R.P. Farley, D.K. Gill, J.H. Goebel, M. Jhabvala, A. Kashani, E. Romero and M.T. Sullivan, The Telescope read-out Electronics for the Gravity Probe B Satellite, Journal de Physique IV, Vol. 8, Proceedings, Eds. L. Brogiato, D.V. Camin and G. Pessina, Wolte-3, pp. Pr-175-Pr-3-179 (1998).Google Scholar
  152. [152]
    R.W. Keyes, Miniaturization of Electronics and its Limits, IBM Journal of Research and Development, Vol. 44(1/2), pp. 84–88 (January/March 2000).Google Scholar
  153. [153]
    A.V. Brown, An Overview of Josephson Packaging, IBM Journal of Research and Development, Vol. 24(2), pp. 167–171 (1979).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. Jamal Deen
    • 1
  • F. Javier De la Hidalga-W
    • 2
  1. 1.Departement of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Departemento de ElectonicaINAOEPueblaMéxico

Personalised recommendations