Fundamentals of Molecular Similarity pp 83-99 | Cite as
Dissimilarity Measures: Introducing a Novel Methodology
Abstract
In recent years the concept of similarity has been mathematically transformed into a practical tool for compound comparison. The consequent development of many methods for similarity calculation have permitted the application of the correlated similarity measures to many chemical fields [28]. Successively, because of the challenging task posed by the combinatorial generation of large databases of compounds researchers became interested in the development of methodologies to select subsets of diverse compounds from those databases. In this perspective, many systems for diversity evaluation have been developed and applied mainly to databases analysis [9131 Nevertheless, the relatively recent introduction of the dissimilarity use in compound comparison still permits the addition of new methodologies.
Keywords
Similarity Index Percent Variation Dissimilarity Measure Molecular Similarity Final IndexPreview
Unable to display preview. Download preview PDF.
References and Notes
- 1.Dedicated to professor E.J. Corey on occasion of his 70th birthdayGoogle Scholar
- 2.Concepts and Applications of Molecular Similarity. M.A. Johnson, G.M. Maggiora, eds.: Wiley Interscience, (1990) , New YorkGoogle Scholar
- 3.Molecular Similarity and Reactivity: from Quantum Chemical to Phenomenological Approaches. R. Carbo’, ed.: Kluwer Academic Publishers, (1995), Dordrecht 4. Advances in Molecular Similarity. R. Carbo’-Dorca, P.G. Mezey, eds.: JAI Press Inc., (1996), LondonGoogle Scholar
- 5.P.A. Bath, A.R. Poirrette, P. Willett, F.H. Allen, J. Chem. Inf. Comput. Sci. 1994, 34, 141CrossRefGoogle Scholar
- 6.P.N. Judson, J. Chem. Inf. Comput. Sci. 1994, 34, 148CrossRefGoogle Scholar
- 7.For some commercial packages using molecular similarity: a) G. Grethe, T.E. Moock, J. Chem. Inf. Comput. Sci. 1990, 30, 511.CrossRefGoogle Scholar
- 7b).G. Grethe, W.D. Hounshell. In Chem. Struct. 2 Proc. Int. Conf. 2nd 1990. W.A. Warr, ed.: Springer-Verlag, (1993), Berlin, p.399Google Scholar
- 8.R. Benigni, C. Andreoli, A. Giuliani, Environ. Mol. Mutagen. 1994, 24, 208CrossRefGoogle Scholar
- 9.M.J. McGregor, P.V. Pallai, J. Chem. Inf. Comput. Sci. 1997, 37, 443CrossRefGoogle Scholar
- 10.D.K. Agrafiotis, J. Chem. Inf. Comput. Sci. 1997, 37, 841CrossRefGoogle Scholar
- 11.E.J. Martin, J.M. Blaney, M.A. Siani, D.C. Spellmeyer, A.K. Wong, W.H. Moos, J. Med.Chem. 1995, 38, 1431CrossRefGoogle Scholar
- 12.R.A. Lewis, J.S. Mason, I.M. McLay, J. Chem. Inf. Comput. Sci. 1997, 37, 599CrossRefGoogle Scholar
- 13.V.J. Gillet, P. Willet, J. Bradshaw, J. Chem. Inf. Comput. Sci. 1997, 37, 731CrossRefGoogle Scholar
- 14.Sello, G., J. Chem. Inf. Comput. Sci. 1998, 38, 691CrossRefGoogle Scholar
- 15.B. Leoni, G. Sello. In Molecular Similarity and Reactivity: from Quantum Chemical to Phenomenological Approaches, R. Carbo’ ed.: Kluwer Academic Publishers, (1995), Dordrecht, p.267CrossRefGoogle Scholar
- 16.L. Baumer, G. Sello, J. Chem. Inf. Comput Sci. 1992, 32, 125CrossRefGoogle Scholar
- 17.G. Sello, M. Termini. In Advances in Molecular Similarity, R. Carbo’-Dorca and P.G. Mezey eds.: JAI Press Inc., (1996), London, p. 213CrossRefGoogle Scholar
- 18.J. Gasteiger, W.D. Thlenfeldt, R. Fick, J.R. Rose, J. Chem. Inf. Comput Sci. 1992, 32, 700CrossRefGoogle Scholar