Quantum Molecular Similarity: Theory and Applications to the Evaluation of Molecular Properties, Biological Activities and Toxicity

  • Ramon Carbó-Dorca
  • Lluís Amat
  • Emili Besalú
  • Xavier Gironés
  • David Robert
Part of the Mathematical and Computational Chemistry book series (MACC)

Abstract

In this chapter we present an updated revision of the mathematical interpretation leading to further development of the theory and practice associated with quantum similarity measures (QSM) [1–40]. The role of QSM can be resumed on their ability to be the vehicle producing discrete ndimensional mathematical representations of molecular structures. This property transforms QSM into a general source of unbiased molecular descriptors. QSM descriptors are general indeed, because of their quantum chemical origin: They can be computed, in principle, for any quantum system or any molecular structure possessing arbitrary geometrical conformation or state. Moreover, QSM descriptors are unbiased, because their values are not chosen by a priori designs: They are built up as a consequence of the theoretical quantum framework results and only depend on the nature and topological characteristics of the studied molecular set.

Keywords

Partial Little Square Similarity Matrix Molecular Descriptor QSAR Model Positive Definite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Carbó, M. Arnau, and L. Leyda, Int. J. Quantum Chem. 17, 1185 (1980).CrossRefGoogle Scholar
  2. 2.
    E. E. Hodgkin and W. G. Richards, Int. J. Quantum Chem. 14, 105 (1987).CrossRefGoogle Scholar
  3. 3.
    C. Burt, W. G. Richards, and P. Huxley, J. Comput. Chem. 11, 1139 (1990).CrossRefGoogle Scholar
  4. 4.
    A. C. Good, E. E. Hodgkin, and W. G. Richards, J. Chem. Inf. Comput. Sci. 32, 188 (1992).CrossRefGoogle Scholar
  5. 5.
    A. C. Good, S.-S. So, and W. G. Richards, J. Med. Chem. 36, 433 (1993).CrossRefGoogle Scholar
  6. 6.
    C. Good and W. G. Richards, J. Chem. Inf. Comput. Sci. 33, 112 (1993).CrossRefGoogle Scholar
  7. 7.
    D. L. Cooper and N. L. Allan, J. Comput.-Aided Mol. Des. 3, 253 (1989).CrossRefGoogle Scholar
  8. 8.
    D. L. Cooper and N. L. Allan, J. Am. Chem. Soc. 114, 4773 (1992).CrossRefGoogle Scholar
  9. 9.
    D. L. Cooper, K. A. Mort, N. L. Allan, D. Kinchington, and C. McGuidan, J. Am. Chem Soc. 115, 12615 (1993).CrossRefGoogle Scholar
  10. 10.
    N. L. Allan and D. L. Cooper, Top. Curr. Chem. 173, 85 (1995).CrossRefGoogle Scholar
  11. 11.
    J. Cioslowski and E. D. Fleishmann, J. Am. Chem. Soc. 113, 64 (1991).CrossRefGoogle Scholar
  12. 12.
    J. B. Ortiz and J. Cioslowski, Chem. Phys. Lett. 185, 270 (1991).CrossRefGoogle Scholar
  13. 13.
    J. Cioslowski and M. Challacombe, Int. J. Quantum Chem. S25, 81 (1991).CrossRefGoogle Scholar
  14. 14.
    J. Cioslowski and S. T. Mixon, Can. J. Chem. 70, 443 (1992).CrossRefGoogle Scholar
  15. 15.
    J. Cioslowski and A. Nanayakkara, J. Am. Chem. Soc. 115, 1213 (1993).Google Scholar
  16. 16.
    J. Cioslowski, B. B. Stefanov, and P. Constans, J. Comput. Chem. 17, 1352 (1996).CrossRefGoogle Scholar
  17. 17.
    R. Ponec and M. Strnad, Collect. Czech. Chem. Commun. 55, 896 (1990).CrossRefGoogle Scholar
  18. 18.
    R. Ponec and M. Strnad, Collect. Czech. Chem. Commun. 55, 2583 (1990).CrossRefGoogle Scholar
  19. 19.
    R. Ponec and M. Strnad, J. Phys. Org. Chem. 4, 701 (1991).CrossRefGoogle Scholar
  20. 20.
    R. Ponec and M. Strnad, J. Math. Chem. 8, 103 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Ponec and M. Strnad, Int. J. Quantum Chem. 42, 501 (1992).CrossRefGoogle Scholar
  22. 22.
    R. Ponec, J. Chem. Inf. Comput. Sci. 33, 805 (1993).CrossRefGoogle Scholar
  23. 23.
    R. Ponec, Overlap Determinant Method in the Theory of Pericyclic Reactions, Lecture notes in Chemistry 65, Springer-Verlag, Berlin (1995).CrossRefGoogle Scholar
  24. 24.
    P. G. Mezey, Shape in Chemistry: An Introduction to Molecular Shape and Topology, VCH, New York (1993).Google Scholar
  25. 25.
    P. G. Mezey, Top. Curr. Chem. 173, 63 (1995).CrossRefGoogle Scholar
  26. 26.
    C. Lee and S. Smithline, J. Phys. Chem. 98, 1135 (1994).CrossRefGoogle Scholar
  27. 27.
    C. Amovilli and R. McWeeny, J. Mol. Struct. (Theochem) 227, 1 (1991).CrossRefGoogle Scholar
  28. 28.
    A. C. Good, J. Mol. Graph. 10, 144 (1992).CrossRefGoogle Scholar
  29. 29.
    R. Benigni, M. Cotta-Ramusino, F. Giorgi, and G. Gallo, J. Med. Chem. 38, 629 (1995)CrossRefGoogle Scholar
  30. 30.
    J. D. Petke, J. Comput. Chem. 14, 928 (1993).CrossRefGoogle Scholar
  31. 31.
    A. Riera, J. Mol. Struct. (Theochem) 259, 83 (1992).CrossRefGoogle Scholar
  32. 32.
    F. Fratev, O. E. Polansky, A. Mehlhorn, and V. Monev, J. Mol. Struct. 56, 245 (1979).CrossRefGoogle Scholar
  33. 33.
    F. Fratev, V. Monev, A. Mehlhorn, and O. E. Polansky, J. Mol. Struct. (Theochem) 56, 255 (1979).CrossRefGoogle Scholar
  34. 34.
    M. A. Johnson and G. Maggiora (eds.), Concepts and Applications of Molecular Similarity, John Wiley, New York (1990).Google Scholar
  35. 35.
    R. Carbó (ed.) Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, Kluwer, Dordrecht (1995).Google Scholar
  36. 36.
    K. Sen (ed.), Molecular Similarity. Top. Curr. Chem. Vols. 173 and 174, SpringerVerlag, Berlin (1995).Google Scholar
  37. 37.
    P. M. Dean (ed.), Molecular Similarity in Drug Design, Blackie Academic & Professional, London (1995).Google Scholar
  38. 38.
    R. Carbó-Dorca and P. G. Mezey (eds.), Advances in Molecular Similarity, Vol. 1, JAI Press, Greenwich (1996).Google Scholar
  39. 39.
    R. Carbó-Dorca and P. G. Mezey (eds.), Advances in Molecular Similarity, Vol. 2, JAI Press, Greenwich (1998).Google Scholar
  40. 40.
    R. Carbó and L. Domingo, lnt. J. Quantum Chem. 23, 517 (1987).CrossRefGoogle Scholar
  41. 41.
    R. Carbó-Dorca, J. Math. Chem. 23, 353 (1998).CrossRefGoogle Scholar
  42. 42.
    R. Carbó-Dorca, J. Math. Chem. 23, 365 (1998).CrossRefGoogle Scholar
  43. 43.
    R. Carbó-Dorca, in Advances in Molecular Similarity, Vol. 2, R. Carbó-Dorca and P. G. Mezey (eds.), JAI Press, Greenwich (1998).Google Scholar
  44. 44.
    R. Carbó-Dorca and E. Besalú, J. Mol. Struct. (Theochem) 451, 11 (1998).CrossRefGoogle Scholar
  45. 45.
    R. Carbó and B. Calabuig, Comput. Phys. Commun. 55, 117 (1989).CrossRefGoogle Scholar
  46. 46.
    R. Carbó and B. Calabuig, J. Mol. Struct. (Theochem) 254, 517 (1992).CrossRefGoogle Scholar
  47. 47.
    R. Carbó and B. Calabuig, in Computational Chemistry: Structure, Interactions and Reactivity, Vol. A., S. Fraga (ed.) Elsevier, Amsterdam (1992).Google Scholar
  48. 48.
    R. Carbó, B. Calabuig, L. Vera, and E. Besalú, Adv. Quantum Chem. 25, 253 (1994).CrossRefGoogle Scholar
  49. 49.
    R. Carbó and B. Calabuig, Int. J. Quantum Chem. 42, 1681 (1992).CrossRefGoogle Scholar
  50. 50.
    R. Carbó and E. Besalú, in Molecular Similarity and Reactivity: From Quantum Chemistry to Phenomenological Approaches, R. Carbó (ed.) Kluwer, Dordrecht (1995).CrossRefGoogle Scholar
  51. 51.
    R. Carbó and B. Calabuig, J. Chem. lnf. Comput. Sci. 32, 600 (1992).Google Scholar
  52. 52.
    R. Carbó-Dorca, E. Besalú, L. Amat, and X. Fradera, in Advances in Molecular Similarity, Vol. 1, R. Carbó-Dorca and P. G. Mezey (eds.) JAI Press, Greenwich (1996).Google Scholar
  53. 53.
    D. Robert and R. Carbó-Dorca, J. Math. Chem. 23, 327 (1998).CrossRefGoogle Scholar
  54. 54.
    D. Robert and R. Carbó-Dorca, Nuovo Cimento A 111, 1311 (1998).Google Scholar
  55. 55.
    R. Carbó, E. Besalú, L. Amat, and X. Fradera, J. Math. Chem. 18, 237 (1995).CrossRefGoogle Scholar
  56. 56.
    X. Fradera, L. Amat, E. Besalú, and R. Carbó-Dorca, Quant. Struct. -Act. Relat. 16, 25 (1997).CrossRefGoogle Scholar
  57. 57.
    M. Lobato, L. Amat, E. Besalú, and R. Carbó-Dorca, Scientia Gerundensis 23, 17 (1998).Google Scholar
  58. 58.
    M. Lobato, L. Amat, E. Besalú, and R. Carbó-Dorca, Quant. Struct.-Act. Relat. 16, 465 (1997).CrossRefGoogle Scholar
  59. 59.
    D. Robert and R. Carbó-Dorca, J. Chem. Inf. Comput. Sci. 38, 620 (1998).CrossRefGoogle Scholar
  60. 60.
    L. Amat, D. Robert, E. Besalú, and R. Carbó-Dorca, J. Chem. Inf. Comput. Sci. 38, 624 (1998).CrossRefGoogle Scholar
  61. 61.
    D. Robert, L. Amat, and R. Carbó-Dorca, J. Chem. lnf. Comput. Sci. 39, 333 (1999).Google Scholar
  62. 62.
    R. Ponec, L. Amat, and R. Carbó-Dorca, J. Comput-Aided Mol. Des. 13, 259 (1999).CrossRefGoogle Scholar
  63. 63.
    L. Amat, R. Carbó-Dorca, and R. Ponec, J. Comput. Chem. 19, 1575 (1998).CrossRefGoogle Scholar
  64. 64.
    R. Ponec, L. Amat, and R. Carbó-Dorca, J. Phys. Org. Chem. 12, 447 (1999).CrossRefGoogle Scholar
  65. 65.
    P. G. Mezey, R. Ponec, L. Amat, and R. Carbó-Dorca, Enantiomer 4, 371 (1999).Google Scholar
  66. 66.
    L. Amat, R. Carbó-Dorca, and R. Ponec, J. Med. Chem. 42, 5169 (1999).CrossRefGoogle Scholar
  67. 67.
    D. Robert, X. Gironés, and R. Carbó-Dorca, J. Comput. -Aided Mol. Des. 13, 597 (1999).CrossRefGoogle Scholar
  68. 68.
    X. Gironés, L. Amat, and R. Carbó-Dorca, R., SAR QSAR Environ. Res. 10, 545 (1999).Google Scholar
  69. 69.
    D. Robert and R. Carbó-Dorca, SAR QSAR Environ. Res. 10, 401 (1999).CrossRefGoogle Scholar
  70. 70.
    C. Hansch, B. H. Venger, and A. Panthananickal, J. Med. Chem. 23, 459 (1980).CrossRefGoogle Scholar
  71. 71.
    S. E. Sherman and S. J. Lippard, Chem. Rev. 87, 1153 (1987).CrossRefGoogle Scholar
  72. 72.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, et al. Gaussian-94, (Revision E.2), Gaussian, Inc., Pittsburgh (1995).Google Scholar
  73. 73.
    E. Besalú, R. Carbó, J. Mestres, and M. Solà, Top. Curr. Chem. 173, 31 (1995).Google Scholar
  74. 74.
    R. Carbó and E. Besalú, J. Math. Chem. 20, 247 (1996).CrossRefGoogle Scholar
  75. 75.
    R. Carbó, E. Besalú, L. Amat, and X. Fradera, J. Math. Chem. 19, 47 (1996).CrossRefGoogle Scholar
  76. 76.
    D. Robert and R. Carbó-Dorca, J. Chem. Inf. Comput. Sci. 38, 469 (1998).CrossRefGoogle Scholar
  77. 77.
    P. Constans, L. Amat, and R. Carbó-Dorca, J. Comput. Chem. 18, 826 (1997).CrossRefGoogle Scholar
  78. 78.
    R. Carbó-Dorca, L. Amat, E. Besald, and M. Lobato, in Advances in Molecular Similarity, Vol. 2, R. Carbó-Dorca and P. G. Mezey (eds.), JAI Press, Greenwich (1998).Google Scholar
  79. 79.
    L. A. Zadeh, Inform. Control 8, 338 (1965).CrossRefGoogle Scholar
  80. 80.
    E. Trillas, C. Alsina, and J. M. Terricabras, Introducción a la Lógica Difusa, Ariel Matemática, Barcelona (1995).Google Scholar
  81. 81.
    R. Carbó-Dorca, J. Math. Chem. 22, 143 (1997).CrossRefGoogle Scholar
  82. 82.
    R. Carbó-Dorca, E. Besalú, and X. Gironés, Extended Density Functions and Quantum Chemistry, Technical Report: IT-IQC-99–02. Adv. Quantum Chem. in press.Google Scholar
  83. 83.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1993).Google Scholar
  84. 84.
    T. M. Vinigradov (ed.) Encyclopaedia of Mathematics, Vol. 8, Reidel-Kluwer, Dordrecht (1987).Google Scholar
  85. 85.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955).Google Scholar
  86. 86.
    D. Bohm, Quantum Theory, Dover, New York (1989).Google Scholar
  87. 87.
    S. Goldstein, Physics Today, March, 42 (1988) and April, 38 (1988).Google Scholar
  88. 88.
    P. O. Löwdin, Phys. Rev. 97, 1474 (1955).CrossRefGoogle Scholar
  89. 89.
    R. McWeeny, Revs. Mod. Phys. 32, 335 (1960).CrossRefGoogle Scholar
  90. 90.
    R. McWeeny, Proc. Roy. Soc. A 253, 242 (1959).CrossRefGoogle Scholar
  91. 91.
    E. R. Davidson, Reduced Density Matrices in Quantum Chemistry, Academic Press, New York (1976).Google Scholar
  92. 92.
    J. Mestres, M. Solà, M. Duran, and R. Carbó, J. Comput. Chem. 15, 1113 (1994).CrossRefGoogle Scholar
  93. 93.
    P. Constans and R. Carbó, J. Chem. Inf. Comput. Sci. 35, 1046 (1995).CrossRefGoogle Scholar
  94. 94.
    P. Constans, L. Amat, X. Fradera, and R. Carbó-Dorca, in Advances in Molecular Similarity, Vol. 1, R. Carbó-Dorca and P. G. Mezey (eds.), JAI Press, Greenwich (1996).Google Scholar
  95. 95.
    L. Amat, X. Fradera, and R. Carbó, Scientia Gerundensis 22, 97 (1996).Google Scholar
  96. 96.
    L. Amat and R. Carbó-Dorca, J. Comput. Chem. 18, 2023 (1997).CrossRefGoogle Scholar
  97. 97.
    L. Amat and R. Carbó-Dorca, J. Comput. Chem. 20, 911 (1999).CrossRefGoogle Scholar
  98. 98.
    E. V. Ludeña, in Química Teórica, Nuevas Tendencias, Vol. 4, S. Fraga (ed.), CSIC, Madrid (1987).Google Scholar
  99. 99.
    I. Shavitt, in Methods of Electronic Structure Theory, Modern Theoretical Chemistry, Vol. 3, H. F. Schaefer III (ed.), Plenum Press, New York (1977).Google Scholar
  100. 100.
    A. Lichnerowicz, Algèbre et Analyse Linéaires, Masson & Cie. Éditeurs, Paris (1947).Google Scholar
  101. 101.
    C. G. J. Jacobi, J. Reine Angew. Math. 30, 51 (1846).CrossRefGoogle Scholar
  102. 102.
    R. Carbó and E. Besalú, in Strategies and Applications in Quantum Mechanics, Y. Ellinger and M. Defranceschi (eds.), Kluwer, Dordrecht (1996).Google Scholar
  103. 103.
    R. Carbb and E. Besalú, J. Math. Chem. 18, 37 (1995).CrossRefGoogle Scholar
  104. 104.
    R. Carbó and E. Besalú, Comput. Chem. 18, 117 (1994).CrossRefGoogle Scholar
  105. 105.
    R. Carbó and E. Besalú, J. Math. Chem. 13, 331 (1993).CrossRefGoogle Scholar
  106. 106.
    P. Hohenberg and W. Kohn, Phys. Rev. B136, 864 (1964).CrossRefGoogle Scholar
  107. 107.
    K. D. Sen, E. Besalú, and R. Carbó-Dorca, J. Math. Chem. 25, 253 (1999).CrossRefGoogle Scholar
  108. 108.
    P. G. Mezey, J. Math. Chem. 23, 65 (1998).CrossRefGoogle Scholar
  109. 109.
    S. K. Berberian, Introducción al Espacio de Hilbert, Teide, Barcelona (1970).Google Scholar
  110. 110.
    A. Jeffrey, Handbook of Mathematical Formulas and Integrals, Academic Press, New York (1995).Google Scholar
  111. 111.
    R. E. Moss, Advanced Molecular Quantum Mechanics, Chapman & Hall, London (1973).CrossRefGoogle Scholar
  112. 112.
    W. Greiner, Relativistic Quantum Mechanics, Springer-Verlag, Berlin (1997).Google Scholar
  113. 113.
    R. Dedekind, Essays on the Theory of Numbers, Dover, New York (1963).Google Scholar
  114. 114.
    R. Carbó, B. Calabuig, E. Besalú and A. Martínez, Molecular Engineering 2, 43 (1992).CrossRefGoogle Scholar
  115. 115.
    R. G. Parr, The Quantum Theory of Molecular Electronic Structure, W. A. Benjamin Inc., New York (1963).Google Scholar
  116. 116.
    R. Carbó and J. M. Riera, A general SCF Theory, Lecture Notes in Chemistry, Vol. 5, Springer-Verlag, Berlin (1978).CrossRefGoogle Scholar
  117. 117.
    T. Akutsu, IEICE Trans. Inf. Sys. E-75D, 95 (1992).Google Scholar
  118. 118.
    T. Akutsu, IEICE Trans. Fund. Elec. Com. Comput. Sci. E-76A, 9(1993).Google Scholar
  119. 119.
    T. Asano, Theo. Comput. Sci. 38, 249 (1985).CrossRefGoogle Scholar
  120. 120.
    D.J. Klein, J. Chem. Inf. Comput. Sci. 37, 656 (1997).CrossRefGoogle Scholar
  121. 121.
    I.T. Jolliffe, Principal Component Analysis, Springer, New York (1986).CrossRefGoogle Scholar
  122. 122.
    S. Wold, E. Johansson, and M. Cocchi, in 3D QSAR in Drug Design, H. Kubinyi (ed.), ESCOM, Leiden (1993).Google Scholar
  123. 123.
    S. Wold, in Chemometric Methods in Molecular Design, H. van de Waterbeemd (ed.), VCH, Weinheim (1995).Google Scholar
  124. 124.
    I. Borg and P. Groenen, Modern Multidimensional Scaling, Springer, New York (1997).Google Scholar
  125. 125.
    C.M. Cuadras and C. Arenas, Commun. Statist. Theor. Meth. 19, 2261 (1990).CrossRefGoogle Scholar
  126. 126.
    D.M. Allen, Technometrics 16, 125 (1974).CrossRefGoogle Scholar
  127. 127.
    S. Wold and L. Ericksson, in Chemometric Methods in Molecular Design, H. van de Waterbeemd (ed.), VCH, New York (1995).Google Scholar
  128. 128.
    L. Amnat, P. Constans, E. Besalú, and R. Carbó, MOLSIMIL 97, Institute of Computational Chemistry, University of Girona (1997).Google Scholar
  129. 129.
    L. Amat, D. Robert, and E. Besalú, TQSAR-SIM, Institute of Computational Chemistry, University of Girona (1997).Google Scholar
  130. 130.
    K. Yutani, K. Ogasahara, T. Tsujita, K. Kanemoto, et al.,J. Biol. Chem. 262, 13429 (1987).Google Scholar
  131. 131.
    K. Yutani, K. Ogasahara, K. Aoki, T. Kakuno, and Y. Sugino, J. Biol. Chem. 259, 14076 (1984).Google Scholar
  132. 132.
    K. Yutani, K. Ogasahara, and Y. Sugino, Adv. Biophys. 20, 13 (1985).CrossRefGoogle Scholar
  133. 133.
    K. Yutani, K. Ogasahara, T. Tsujita, and Y. Sugino, Proc. Natl. Acad. Sci. USA 84, 4441 (1987).CrossRefGoogle Scholar
  134. 134.
    J. Damborský, Prot. Eng. 11, 21 (1998).CrossRefGoogle Scholar
  135. 135.
    PC Spartan Plus, Wavefunction Inc., Irvine CA, 92612 USA.Google Scholar
  136. 136.
    O. Exner, Correlation Analysis of Chemical Data, Plenum Press, New York (1988).Google Scholar
  137. 137.
    Y. Nozaki and C. Tanford, J. Theor. Biol. 67, 567 (1971).Google Scholar
  138. 138.
    M. R. Sweet and D. Eisenberg, J. Mol. Biol. 171, 479 (1983).CrossRefGoogle Scholar
  139. 139.
    S. Rackovsky and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 74, 5248 (1977).CrossRefGoogle Scholar
  140. 140.
    R. D. Cramer III, D. E. Patterson, and J. D. Bunce, J. Am. Chem. Soc. 110, 5959 (1988).CrossRefGoogle Scholar
  141. 141.
    R. F. Rekker, in Pharmacochemistry Library, W. T. Nauta and R. F. Rekker (eds.), Elsevier, New York (1977).Google Scholar
  142. 142.
    E. Urrestarazu, W. H. J. Vaes, H. J. M. Verhaar, and J. L. M. Hermens, J. Chem. Inf. Comput. Sci. 38, 845 (1998).CrossRefGoogle Scholar
  143. 143.
    S. Karabunarliev, O. G. Mekenyan, W. Karcher, C. L. Russom, and S. P. Bradbury, Quant. Struct.-Act. Relat. 15, 311 (1996).CrossRefGoogle Scholar
  144. 144.
    L. H. Hall, L. B. Kier, and G. Phipps, Environ. Toxicol. Chem. 3, 355 (1984).CrossRefGoogle Scholar
  145. 145.
    B. D. Gute and S. C. Basak, SAR QSAR Environ. Res. 7, 117 (1997).CrossRefGoogle Scholar
  146. 146.
    D. L. Geiger, L. T. Brooke, and D. J. Call (eds.) Acute toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas), Vol. 5, Center for Lake Environmental Studies, University of Wisconsin-Superior, Superior (1990).Google Scholar
  147. 147.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  148. 148.
    AMPAC 6.0, 1994 Semichem, 7128 Summit, Shawnee, KS 66216 D.A.Google Scholar
  149. 149.
    H.J. M. Verhaar, C. J. van Leeuwen, and J. L. M. Hermens, Chemosphere 25, 471 (1992).CrossRefGoogle Scholar
  150. 150.
    P.G. Mezey, Molec. Phys. 96, 169 (1999).CrossRefGoogle Scholar
  151. 151.
    N. S. E. Sargent, D. G. Upshall, and J. W. Bridges, Biochem. Pharmac. 31, 1309 (1982).CrossRefGoogle Scholar
  152. 152.
    R. W. Taft, J. Am. Chem. Soc. 86, 5175 (1968).Google Scholar
  153. 153.
    L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).CrossRefGoogle Scholar
  154. 154.
    A. Streitweiser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).Google Scholar
  155. 155.
    A. K. Saxena, Quant. Struct. -Act. Relat. 14, 142 (1995).CrossRefGoogle Scholar
  156. 156.
    M. Randic, J. Am. Chem. Soc. 97, 6609 (1975).CrossRefGoogle Scholar
  157. 157.
    L. B. Kier, W. J. Murray, M. Randic, and L. M. Hall, J. Pharm. Sci. 65, 1226 (1976).CrossRefGoogle Scholar
  158. 158.
    C.K. Chu, R. F. Schinazi, M. K. Ahn, G. V. Ullas, and Z. P. Gu, J. Med Chem. 32, 612 (1989).CrossRefGoogle Scholar
  159. 159.
    A. T. Balaban, J. Chem. Inf. Comput. Sci. 35, 339 (1995).CrossRefGoogle Scholar
  160. 160.
    M. Randic, B. Jerman-Blacic, and N. Trinajstic, Comput. Chem. 14, 237 (1990).CrossRefGoogle Scholar
  161. 161.
    Z. Mihalic and N. Trinajstic, J. Chem. Educ. 69, 701 (1992).CrossRefGoogle Scholar
  162. 162.
    M. Wagener, J. Sadowski, and J. Gasteiger, J. Am. Chem. Soc. 117, 7769 (1995).CrossRefGoogle Scholar
  163. 163.
    http://iqc.udg.es/cat/similarity/QSAR/steroids.htm.Google Scholar
  164. 164.
    H. Hosoya, Bull. Chem. Soc. Jap. 45, 2332 (1971).CrossRefGoogle Scholar
  165. 165.
    H. Hosoya, Bull. Chem. Soc. Jap. 45, 3415 (1971).CrossRefGoogle Scholar
  166. 166.
    D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, Wiley, New York (1992).Google Scholar
  167. 167.
    B.D. Silverman and D. E. Platt, J. Med. Chem. 39, 2130 (1996).CrossRefGoogle Scholar
  168. 168.
    D. A. Pierre, Optimization Theory with Applications, Wiley, New York (1969).Google Scholar
  169. 169.
    R. Carbó, L. Molino, and B. Calabuig, J. Comput. Chem. 13, 155 (1992).CrossRefGoogle Scholar
  170. 170.
    M. R. Spiegel, Mathematical Handbook, McGraw-Hill, New York (1968).Google Scholar
  171. 171.
    J.S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980).CrossRefGoogle Scholar
  172. 172.
    M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, J. Am. Chem. Soc. 104, 2797 (1982).CrossRefGoogle Scholar
  173. 173.
    R. Carbó-Dorca, ATOMIC Program 1995, based on: B. Roos, C. Salez, A. Veillard, and E. Clementi, A General Program for Calculation of SCF Orbitals by the Expansion Method, IBM Research/RJ518(#10901) (1968).Google Scholar
  174. 174.
    ASA coefficients and exponents can be downloaded from: http://iqc.udg.es/cat/similarity/ASA/func6–21.htmlGoogle Scholar
  175. 175.
    R. Bonaccorsi, E. Scrocco, and T. Tomasi, J. Chem. Phys. 52, 5270 (1970).CrossRefGoogle Scholar
  176. 176.
    H. E. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Systems, Springer-Verlag, London (1957).Google Scholar
  177. 177.
    R. E. Moss, Advanced Molecular Quantum Mechanics, Chapman & Hall, London (1973).CrossRefGoogle Scholar
  178. 178.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London (1978).Google Scholar
  179. 179.
    J. Almlöf and O. Gropen, Revs. Comput. Chem. 8, 203 (1996).Google Scholar
  180. 180.
    M. D. Miller, R. P. Sheridan, and S. K. Kearsley, J. Med. Chem. 42, 1505 (1999).CrossRefGoogle Scholar
  181. 181.
    G. Sello, J. Chem. Inf. Comput. Sci. 38, 691 (1998).CrossRefGoogle Scholar
  182. 182.
    D. D. Robinson, P. D. Lyne, and W. G. Richards, J. Chem. Inf. Comput. Sci. 39, 594 (1999).CrossRefGoogle Scholar
  183. 183.
    J. Mestres, D. C. Rohrer, and G. M. Maggiora, J. Comput. Chem. 18, 934 (1997).CrossRefGoogle Scholar
  184. 184.
    J. A. Grant, M. A. Gallardo, and B. T. Pickup, J. Comput. Chem. 17, 1653 (1996).CrossRefGoogle Scholar
  185. 185.
    M. J. Sippl and H. Stegbuchner, Comput. Chem. 15, 73 (1991).CrossRefGoogle Scholar
  186. 186.
    P. K. Redington, Comput. Chem. 16, 217 (1992).CrossRefGoogle Scholar
  187. 187.
    A. T. Brint and P. Willett, J. Chem. Inf. Comput. Sci. 27, 152 (1987).CrossRefGoogle Scholar
  188. 188.
    P. A. Bath, A. R. Poirrette, P. Willett, and F. H. Allen, J. Chem. Inf. Comput. Sci. 34, 141 (1994).CrossRefGoogle Scholar
  189. 189.
    D. J. Wild and P. Willett, J. Chem. Inf. Comput. Sci. 34, 224 (1994).CrossRefGoogle Scholar
  190. 190.
    D. A. Thorner, D. J. Wild, P. Willett, and P. M. Wright, J. Chem. Inf. Comput. Sci. 36, 900 (1996).CrossRefGoogle Scholar
  191. 191.
    S. Handschuh, J. Chem. Inf Comput. Sci. 38, 220 (1998).CrossRefGoogle Scholar
  192. 192.
    G. Bravi, E. Gancia, P. Mascagni, M. Pegna, R. Todeschini, and A. Zalianni, J. ComputAided Mol. Des. 11, 79 (1997).CrossRefGoogle Scholar
  193. 193.
    G. E. Kellogg, L. B. Kier, P. Gaillard, and L. H. Hall, J. Comput-Aided Mol. Des. 10, 513 (1996).CrossRefGoogle Scholar
  194. 194.
    F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, et al., Acta Cryst. B35, 2331 (1979).Google Scholar
  195. 195.
    P. J. Artymiuk, P. A. Bath, H. M. Grindley, C. A. Pepperrell, et al., J. Chem. Inf. Comput. Sci. 32, 617 (1992).CrossRefGoogle Scholar
  196. 196.
    R. Attias, J. Chem. Inf. Comput. Sci. 23, 102 (1983).CrossRefGoogle Scholar
  197. 197.
    C. W. Crandell and D. H. Smith, J. Chem. Inf. Comput. Sci. 23, 186 (1983).CrossRefGoogle Scholar
  198. 198.
    J. K. Cringean and M. F. Lynch, J. Inf. Sci. 15, 211 (1989).CrossRefGoogle Scholar
  199. 199.
    A. J. Gushurst, J. G. Nourse, W. D. Houndshell, B. A. Leland, and D. G. Raich, J. Chem. Inf. Comput. Sci. 31, 447 (1991).CrossRefGoogle Scholar
  200. 200.
    T. R. Hagadone, J. Chem. Inf. Comput. Sci. 32, 515 (1992).CrossRefGoogle Scholar
  201. 201.
    E. M. Rasmussen, G. M. Downs, and P. Willett, J. Comput. Chem. 9, 378 (1988).CrossRefGoogle Scholar
  202. 202.
    P. Willet, J. Chem. Inf. Comput. Sci. 25, 114 (1985).CrossRefGoogle Scholar
  203. 203.
    P. Willet, J. Inf. Sci. 15, 223 (1989).CrossRefGoogle Scholar
  204. 204.
    P. Willet, V. Winterman, and D. Bawden, J. Chem. Inf. Comput. Sci. 26, 36 (1983).Google Scholar
  205. 205.
    P. Willet, V. Winterman, and D. Bawden, J. Chem. Inf. Comput. Sci. 26, 109 (1983).Google Scholar
  206. 206.
    H. Zhang, M. Minoh, and K. Ikeda, J. Inf. Proc. 15, 108 (1992).Google Scholar
  207. 207.
    E. Garcia and L. M. Reyes, J. Mol. Struct. (Theochem) 101, 101 (1993).Google Scholar
  208. 208.
    P. Kuner and B. Ueberreiter, Int. J. Pat. Recog. Art. Intel. 2, 527 (1988).CrossRefGoogle Scholar
  209. 209.
    E. Bienenstock and C. von der Malsburg, Europhys. Lett. 4, 4 (1987).CrossRefGoogle Scholar
  210. 210.
    R. Sitaraman and A. Rosenfeld, Patt. Recog. 22, 331 (1989).CrossRefGoogle Scholar
  211. 211.
    A. Tomlin (ed.), The Pesticide Manual: a World Compendium:Incorporating the Agrochemicals Handbook, Royal Society of Chemistry, London (1995).Google Scholar
  212. 212.
    B. Böhm, J. Stürzbecher, and G. Klebe, J. Med. Chem. 42, 458 (1999).Google Scholar
  213. 213.
    W. E. Lorensen and H. E. Cline, Comput. Graphics 21, 163 (1987).CrossRefGoogle Scholar
  214. 214.
    A. Watt and M. Watt, Advanced Animation and Rendering Techniques, Addison-Wesley, Reading (1992).Google Scholar
  215. 215.
    Marching cubes algorithm Internet site: http://exaflop.org/docs/marchcubes
  216. 216.
  217. 217.
    A Fortran 90 procedure for the MCA can be downloaded from: http://iqc.udg.es/cat/similarity/ASA/mca.html
  218. 218.
    GiD, Geometry and Data, a pre/post processor graphical interface. Internet site: http://gatxan.upc.es. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (1999).
  219. 219.
    X. Gironés, L. Amat, and R. Carbó-Dorca, J. Mol. Graph. Model. 16, 190 (1998).Google Scholar
  220. 220.
    I. M. Vinogradov (ed.) Encyclopaedia of Mathematics, Vol. 7, Reidel-Kluwer, Dordrecht (1987).Google Scholar
  221. 221.
    R. Carbó-Dorca and K. D. Sen, J. Mol. Struct. (Theochem), 501, 173 (2000).CrossRefGoogle Scholar
  222. 222.
    C. Roos, T. Terlaky, and J.-P. Vial, Theory and Algorithms for Linear Optimization, Wiley, New York (1997).Google Scholar
  223. 223.
    I. M. Vinogradov (ed.) Encyclopaedia of Mathematics, Vol. 4, Kluwer, Dordrecht (1989).Google Scholar
  224. 224.
    LF 95 Language Reference, Lahey Computer Systems, Incline Village NV (1998). For more details browse at: http://www.lahey.com.Google Scholar
  225. 225.
    R. Carbci-Dorca, J. Math. Chem. 23, 365 (1998).CrossRefGoogle Scholar
  226. 226.
    H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, Wiley, New York (1940).Google Scholar
  227. 227.
    L. Pauling and E. B. Wilson Jr., Introduction to Quantum Mechanics, Dover, New York (1985).Google Scholar
  228. 228.
    For a recent matrix formulation, see: E. Besalú and R. Carbó-Dorca, J. Math. Chem. 22, 85 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ramon Carbó-Dorca
    • 1
  • Lluís Amat
    • 1
  • Emili Besalú
    • 1
  • Xavier Gironés
    • 1
  • David Robert
    • 1
  1. 1.Institut de Química ComputacionalUniversitat de GironaGirona, CataloniaSpain

Personalised recommendations