Abstract

Fluorescence sensing of chemical and biochemical analytes is an active area of research.1–7 This research is being driven by the desire to eliminate radioactive tracers, which are costly to use and dispose of. Additionally, there is a need for rapid and low-cost testing methods for a wide range of clinical, bioprocess, and environmental applications. During the past decade, we have witnessed the introduction of numerous methods based on high-sensitivity fluorescence detection, including DNA sequencing, DNA fragment analysis, fluorescence staining of gels following electrophoretic separation, and a variety of fluorescence immunoassays. Historically, one can trace many of these analytical applications to the classic reports by Undenfriend and co-workers,8,9 which anticipated many of today’s applications of fluorescence. More recent monographs have summarized the numerous analytical applications of fluorescence.10–14

Keywords

Oxygen Sensor Yellow Fluorescent Protein Photoinduced Electron Transfer Maltose Binding Protein Fluorescence Sensing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, J. N., and Birch, D. J. S. (eds.), 1997, 4th International Conference on Methods and Applications of Fluorescence Spectroscopy, J. Fluoresc. 7(1):1S-2465.Google Scholar
  2. 2.
    Wolfbeis, O. S. (ed.), 1993, Proceedings of the 1st European Conference on Optical Chemical Sensors and Biosensors, Europt(R)ode I, Sensors Actuators B 11. 565 pp.Google Scholar
  3. 3.
    Baldini, E. (ed.), 1995, Proceedings of the 2nd European Conference on Optical Chemical Sensors and Biosensors, Europt(R)ode I1, Sensors Actuators B 29. 439 pp.Google Scholar
  4. 4.
    Kunz, R. E. (ed.), 1997, Proceedings of the 3rd European Conference on Optical Chemical Sensors and Biosensors, Part I—Plenary and Parallel Sessions; Part II—Poster Sessions, Europt(R)ode III, Sensors Actuators B 38. 1–188 and 189–468.Google Scholar
  5. 5.
    Thompson, R. B. (ed.), 1997, Advances in Fluorescence Sensing Technology III, Proc. SPIE 2980.Google Scholar
  6. 6.
    Lakowicz, J. R. (ed.), 1995, Advances in Fluorescence Sensing Technology II, Proc. SPIE 2388.Google Scholar
  7. 7.
    Wolfbeis, O. S. (ed.), 1991, Biomedical applications of fiber optic chemical sensors, in Fiber Optic Chemical Sensors and Biosensors, Vol. II, O. S. Wolfbeis (ed.), CRC Press, Boca Raton, Florida, pp. 267–300.Google Scholar
  8. 8.
    Undenfriend, S., 1969, Fluorescence Assay in Biology and Medicine, Vol. II, Academic Press, New York. See also Vol. 1, 1962.Google Scholar
  9. 9.
    Duggan, D. E., Bowman, R. L., Brodie, B., and Undenfriend, S., 1957, A spectrophotofluorometric study of compounds ofbiological interest, Arch. Biochem. Biophys. 68: 1–14.Google Scholar
  10. 10.
    Ichinose, N., Schwedt, G., Schnepel, F. M., and Adachi, K., 1987, Fluorometric Analysis in Biomedical Chemistry, John Wiley & Sons, New York.Google Scholar
  11. 11.
    Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.Google Scholar
  12. 12.
    Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.Google Scholar
  13. 13.
    Schulman, S. G. (ed.), 1993, Molecular Luminescence Spectroscopy, Part III: Methods and Applications, John Wiley & Sons, New York. See also Part II, 1988, and Part I, 1985.Google Scholar
  14. 14.
    Czarnik, A. W. (ed.), 1993, Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, D.C.Google Scholar
  15. 15.
    Kieslinger, D., Draxler, S., Trznadel, K., and Lippitsch, M. E., 1997, Lifetime-based capillary waveguide sensor instrumentation, Sensors Actuators B 38–39: 300–304.Google Scholar
  16. 16.
    Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A., 1994, Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Natl. Acad. Sci. U.S.A. 91: 5022–5026.Google Scholar
  17. 17.
    Lipshutz, R. J., Morris, D., Chee, M, Hubbell, E., Kozal, M. J., Shah, N., Shen, N., Yang, R., and Fodor, S. P. A., 1995, Using oligonucleotide probe arrays to access genetic diversity, Bio Techniques 19 (3): 442–447.Google Scholar
  18. 18.
    Mooney, J. E, Hunt, A. J., McIntosh, J. R., Liberko, C. A., Walba, D. M., and Rogers, C. T., 1996, Patterning of functional antibodies and other proteins by photolithography of silane monolayers, Proc. Natl. Acad. Sci. U.S.A. 93: 12287–12291.Google Scholar
  19. 19.
    Bhatia, S. K., Teixeira, J. L., Anderson, M., Schriver-Lake, L. C., Calvert, J. M., Georger, J. H., Hickman, J. J., Dulcey, C. S., Schoen, P. E., and Ligler, F S., 1993, Fabrication of surfaces resistant to protein adsorption and application to two-dimensional protein patterning, Anal. Biochem. 208: 197–205.Google Scholar
  20. 20.
    Kricka, L. J., Skogerboe, K. J., Hage, D. A., Schoeff, L., Wang, J., Sokol, L. J., Chan, D. W., Ward, K. M., and Davis, K. A., 1997, Clinical chemistry, Anal. Chem. 69: 165R - 229R.Google Scholar
  21. 21.
    Lippitsch, M. E., Draxler, S., and Kieslinger, D., 1997, Luminescence lifetime-based sensing: New materials, new devices, Sensors Actuators B 38–39: 96–102.Google Scholar
  22. 22.
    Richards-Kortum, R., and Sevick-Muraca, E., 1996, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47: 555–606.Google Scholar
  23. 23.
    Gouin, J. E, Baros, F, Birot, D., and Andre, J. C., 1997, A fibre-optic oxygen sensor for oceanography, Sensors Actuators B 38–39: 40 1406.Google Scholar
  24. 24.
    Valeur, B., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 21–48.Google Scholar
  25. 25.
    Rettig, W., and Lapouyade, R., 1994, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 109–149.Google Scholar
  26. 26.
    Czarnik, A. W., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 49–70.Google Scholar
  27. 27.
    Fabbrizzi, L., and Poggi, A., 1995, Sensors and switches from supramolecular chemistry, Chem. Soc. Rev. 24: 197–202.Google Scholar
  28. 28.
    Bryan, A. J., Prasanna de Silva, A., de Silva, S. A., Dayasiri Rupasinghe, A. D., and Samankumara Sandanayake, K. R. A., 1989, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors 4:169–179.Google Scholar
  29. 29.
    Demas, J. N., and DeGraff, B. A., 1994, Design and applications of highly luminescent transition metal complexes, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 71–107.Google Scholar
  30. 30.
    Bacon, J. R., and Demas, J. N., 1987, Determination of oxygen concentrations by luminescence quenching of a polymer immobilized transition metal complex, Anal. Chem. 59: 2780–2785.Google Scholar
  31. 31.
    Wolfbeis, O. S., 1991, Oxygen sensors, in Fiber Optic Chemical Sensors and Biosensors, Vol. II, O. S. Wolfbeis (ed.), CRC Press, Boca Raton, Florida, pp. 19–53.Google Scholar
  32. 32.
    Mills, A., and Williams, F C., 1997, Chemical influences on the luminescence of ruthenium diimine complexes and its response to oxygen, Thin Solid Films 306: 163–170.Google Scholar
  33. 33.
    Lippitsch, M. E., Pusterhofer, J., Leiner, M. J. P., and Wolfbeis, O. S., 1988, Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1–6.Google Scholar
  34. 34.
    Draxler, S., Lippitsch, M. E., Klimant, I., Kraus, H., and Wolfbeis, O. S., 1995, Effects of polymer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen, J. Phys. Chem. 99: 3162–3167.Google Scholar
  35. 35.
    Lakowicz, J. R., Johnson, M. L, Lederer, W. J., Szmacinski, H., Nowaczyk, K., Malak, H., and Berndt, K. W., 1992, Fluorescence lifetime sensing generates cellular images, Laser Focus World 28 (5): 60–80.Google Scholar
  36. 36.
    Holst, G., Glud, R. N., Kuhl, M., and Klimant, I., 1997, A microoptode array for fine-scale measurement of oxygen distribution, Sensors Actuators B 38–39: 122–129.Google Scholar
  37. 37.
    Hartmann, P., Ziegler, W., Holst, G., and Lubbers, D. W., 1997, Oxygen flux fluorescence lifetime imaging, Sensors Actuators B 38–39: 110–115.Google Scholar
  38. 38.
    Cox, M. E., and Dunn, B., 1985, Detection of oxygen by fluorescence quenching, Appl. Opt. 24: 2114–2120.Google Scholar
  39. 39..
    Charlesworth, J. M., 1994, Optical sensing of oxygen using phosphorescence quenching, Sensors Actuators B 22: 1–5.Google Scholar
  40. 40.
    Papkovsky, D. B., Ponomarev, G. V., Trettnak, W., and O’Leary, P., 1995, Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensing, Anal. Chem. 67: 4112–4117.Google Scholar
  41. 41.
    Xu, W, Kneas, K. A., Demas, J. N., and DeGraff, B. A., 1996, Oxygen sensors based on luminescence quenching of metal complexes: Osmium complexes suitable for laser diode excitation, Anal. Chem. 68: 2605–2609.Google Scholar
  42. 42.
    Bambot, S. B., Rao, G., Romauld, M., Carter, G. M., Sipior, J., Terpetschnig, E., and Lakowicz, J. R., 1995, Sensing oxygen through skin using a red diode laser and fluorescence lifetimes, Biosensors Bioelectron. 10: 643–652.Google Scholar
  43. 43.
    Xu, W., McDonough, R. C., Langsdorf, B., Demas, J. N., and DeGraff, B. A., 1994, Oxygen sensors based on luminescence quenching. Interactions of metal complexes with the polymer supports, Anal Chem. 66: 4133–4141.Google Scholar
  44. 44.
    Hartmann, P., and Leiner, M. J. P., 1995, Luminescence quenching behavior of an oxygen sensor based on a Ru(II) complex dissolved in polystyrene, Anal. Chem. 6: 88–93.Google Scholar
  45. 45.
    Wolfbeis, O. S., and Urbano, E., 1983, Eine fluorimetrische, schwer-metallfreie methode zur analyse von chlor, brom and iod in organischen materialien, Fresenius’Z Anal. Chem. 314: 577–581.Google Scholar
  46. 46.
    Insley, N. E, and Verkman, A. S.,1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochem. 26: 1215–1219.Google Scholar
  47. 47.
    Verkman, A. S., 1990, Development and biological applications of chloride-sensitive fluorescent indicators, Am. J. Physiol. 253: C375 - C388.Google Scholar
  48. 48.
    Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.Google Scholar
  49. 49.
    Biwersi, J., Tulk, B., and Verkman, A. S., 1994, Long-wavelength chloride-sensitive fluorescent indicators, Anal. Biochem. 219: 139143.Google Scholar
  50. 50.
    Orosz, D. E., and Carlid, K. D., 1992, A sensitive new fluorescence assay for measuring proton transport across liposomal membranes, Anal. Biochem. 210: 7–15.Google Scholar
  51. 51.
    Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., 1989, Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts, Biophys. J. 56: 1071–1081.Google Scholar
  52. 52.
    Wolfbeis, O. S., and Sharma, A., 1988, Fibre-optic fluorosensor for sulphur dioxide, Anal. Chico. Acta 208: 53–58.Google Scholar
  53. 53.
    Sharma, A., Draxler, S., and Lippitsch, M. E., 1992, Time-resolved spectroscopy of the fluorescence quenching of a donor—acceptor pair by halothane, Appl. Phys. B 54: 309–312.Google Scholar
  54. 54.
    Omann, G. M., and Lakowicz, J. R., 1982, Interactions of chlorinated hydrocarbon insecticides with membranes, Biochim. Biophys. Acta 684: 83–95.Google Scholar
  55. 55.
    Vanderkooi, J. M., Wright, W. W., and Erecinska, M., 1994, Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence, Biochim. Biophys. Acta 1207: 249–254.Google Scholar
  56. 56.
    Denicola, A., Souza, J. M., Radi, R., and Lissi, E., 1996, Nitric oxide diffusion in membranes determined by fluorescence quenching, Arch. Biochem. Biophys. 328: 208–212.Google Scholar
  57. 57.
    Jordan, D. M., Walt, D. R., and Milanovich, F. P., 1987, Physiological pH fiber-optic chemical sensor based on energy transfer, Anal. Chem. 59: 437–439.Google Scholar
  58. 58.
    Lakowicz, J. R., Szmacinski, H., and Karakelle, M., 1993, Optical sensing of pH and pCO2 using phase-modulation fluorimetry and resonance energy transfer, Anal. Chim. Acta 272: 179–186.Google Scholar
  59. 59.
    Sipior, J., Bambot, S., Romauld, M., Carter, G. M., Lakowicz, J. R., and Rao, G., 1995, A lifetime-based optical CO2 gas sensor with blue or red excitation and Stokes or anti-Stokes detection, Anal. Biochem. 227: 309–318.Google Scholar
  60. 60.
    Chang, Q., Sipior, J., Lakowicz, J. R., and Rao, G., 1995, A lifetime-based fluorescence resonance energy transfer sensor for ammonia, Anal. Biochem. 232: 92–97.Google Scholar
  61. 61.
    Mills, A., Chang, Q., and McMurray, N., 1992, Equilibrium studies on colorimetric plastic film sensors for carbon dioxide, Anal. Chem. 64: 1383–1389.Google Scholar
  62. 62.
    Wolfbeis, O. S., Reisfeld, R., and Oehme, I., 1996, Sol-gels and chemical sensors, Struct. Bonding 85: 51–98.Google Scholar
  63. 63.
    Avnir, D., Braun, S., and Ottolenghi, M., 1992, A review of novel photoactive, optical, sensing and bioactive materials. A review. ACS Symp. Ser. 499: 384–404.Google Scholar
  64. 64.
    Lakowicz, J. R., 1994, Emerging biomedical applications of time-resolved fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–9.Google Scholar
  65. 65.
    Schultz, J. S., and Sims, G., 1979, Affinity sensors for individual metabolites, BiotechnoL Bioeng. Symp. 9: 65–71.Google Scholar
  66. 66.
    Schultz, J., Mansouri, S., and Goldstein, I. J., 1982, Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites, Diabetes Care 5 (3): 245–253.Google Scholar
  67. 67.
    Meadows, D., and Schultz, J. S., 1988, Fiber-optic biosensors based on fluorescence energy transfer, Talanta 35 (2): 145–150.Google Scholar
  68. 68.
    Lakowicz, J. R., and Maliwal, B. P., 1993, Optical sensing of glucose using phase-modulation fluorometry, Anal. Chim. Acta 271: 155164.Google Scholar
  69. 69.
    Tolosa, L., Szmacinski, H., Rao, G., and Lakowicz, J. R., 1997, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Anal. Biochem. 250: 102–108.Google Scholar
  70. 70.
    Tolosa, L., Malak, H., Rao, G., and Lakowicz, J. R., 1997, Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5T’, Sensors Actuators 45: 93–99.Google Scholar
  71. 71.
    He, H., Li, H., Mohr, G., Kovacs, B., Werner, T., and Wolfbeis, O. S., 1993, Novel type of ion-selective fluorosensor based on the inner filter effect: An optrode for potassium, Anal. Chem. 65:123–127.Google Scholar
  72. 72.
    Roe, J. N., Szoka, E C., and Verkman, A. S., 1989, Optical measurement of aqueous potassium concentration by a hydrophobic indicator in lipid vesicles, Biophys. Chem. 33: 295–302.Google Scholar
  73. 73.
    Roe, J. N., Szoka, F. C., and Verkman, A. S., 1990, Fibre optic sensor for the detection of potassium using fluorescence energy transfer, Analyst 115: 353–368.Google Scholar
  74. 74.
    Mahutte, C. K., 1994, Continuous intra-arterial blood gas monitoring, Intensive Care Med. 20: 85–86.Google Scholar
  75. 75.
    Shapiro, B. A., Mahutte, C. K., Cane, R. D., and Gilmour, I. J., 1993, Clinical performance of a blood gas monitor: A prospective, multicenter trial, Crit. Care Med. 21 (4): 487–494.Google Scholar
  76. 76.
    Yafuso, M., Arick, S. A., Hansmann, D., Holody, M., Miller, W. W., Yan, C. F., and Mahutte, K., 1989, Optical pH measurements in blood, Proc. SPIE 1067: 37–43.Google Scholar
  77. 77.
    Vurek, G. G., Feustel, P. J., and Severinghaus, J. W., 1983, A fiber optic pCO2 sensor, Ann. Biomed. Eng. 11: 499–510.Google Scholar
  78. 78.
    Mahutte, C. K., Holody, M., Maxwell, T. P., Chen, P. A., and Sasse, S. A., 1994, Development of a patient-dedicated, on-demand, blood gas monitor, Am. J. Respir. Crit. Care Med. 149: 852–859.Google Scholar
  79. 79.
    Mahutte, C. K., Sasse, S. A., Chen, P. A., and Holody, M., 1994, Performance of a patient-dedicated, on-demand blood gas monitor in medical ICU patients, Am. J. Respir. Crit. Care Med. 150: 865–869.Google Scholar
  80. 80.
    Opitz, N., and Lubbers, D. W., 1987, Theory and development of fluorescence-based optochemical oxygen sensors: Oxygen optodes, Int. AnesthesioL Clin. 25 (3): 177–197.Google Scholar
  81. 81.
    Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Pmc. Natl. Acad. Sci. U.S.A. 5: 3327–3331.Google Scholar
  82. 82.
    Thomas, J. A., Buchsbaum, R. N., Zimniak, A., and Racker, E., 1979, Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ, Biochemistry 18: 2210–2218.Google Scholar
  83. 83.
    Munkholm, C., Walt, D. R., and Milanovich, E P., 1988, A fiber-optic sensor for CO2 measurement, Talanta 35 (2): 109–112.Google Scholar
  84. 84.
    Kawabata, Y., Kamichika, T., Imasaka, T., and Ishibashi, N., 1989, Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethyleneglycol) membrane, Anal. Chim. Acta 219: 223–229.Google Scholar
  85. 85.
    Yguerabide, J., Talavera, E., Alvarez, J. M., and Quintero, B., 1994, Steady-state fluorescence method for evaluating excited-state proton reactions: Application to fluorescein, Photochem. Photobiol. 60: 435–441.Google Scholar
  86. 86.
    Haugland, R. P., 1996, Chapter 23, in Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, Oregon, pp. 551–561.Google Scholar
  87. 87.
    Rink, T. J., Tsien, R. Y., and Pozzan, T., 1982, Cytoplasmic pH and free Mgt+ in lymphocytes, J. Cell Biol. 95: 189–196.Google Scholar
  88. 88.
    Clement, N. R., and Gould, J. M., 1981, Pyranine (8-hydroxy-1,3,6pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry 20: 1534–1538.Google Scholar
  89. 89.
    Wolfbeis, O. S., Fürlinger, E., Kroneis, H., and Marsoner, H., 1983, Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH-values, Fresenius’Z Anal. Chem. 314: 119–124.Google Scholar
  90. 90.
    Schulman, S. G., Chen, S., Bai, F., Leiner, M. J. P., Weis, L., and Wolfbeis, O. S., 1995, Dependence of the fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on sodium pH: Extension of the range of applicability of a pH fluorosensor, Anal Chim. Acta 304: 165–170.Google Scholar
  91. 91.
    Zhujun, H., and Seitz, W. R., 1984, A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5, Anal. Chim. Acta 160: 47–55.Google Scholar
  92. 92.
    Uttamlal, M., and Walt, D. R., 1995, A fiber-optic carbon dioxide sensor for fermentation monitoring, BioTechnology 13: 597–601.Google Scholar
  93. 93.
    Whitaker, J. E., Haugland, R. P., and Prendergast, F. G., 1991, Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors, Anal. Biochem. 194: 330–344.Google Scholar
  94. 94.
    Szmacinski, H., and Lakowicz, J. R., 1993, Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry, Anal. Chem. 65: 1668–1674.Google Scholar
  95. 95.
    Srivastava, A., and Krishnamoorthy, G., 1997, Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH, Anal. Biochem. 249: 140–146.Google Scholar
  96. 96.
    Wolfbeis, O. S., Rodriguez, N. V., and Werner, T., 1992, LED-compatible fluorosensor for measurement of near-neutral pH values, Mikrochim. Acta 108: 133–141.Google Scholar
  97. 97.
    Zen, J-M., and Patonay, G., 1991, Near-infrared fluorescence probe for pH determination, Anal. Chem. 63: 2934–2938.Google Scholar
  98. 98.
    Boyer, A. E., Devanathan, S., Hamilton, D., and Patonay, G., 1992, Spectroscopic studies of a near-infrared absorbing pH sensitive carbocyanine dye, Talanta 39 (5): 505–510.Google Scholar
  99. 99.
    Wolfbeis, O. S., and Marhold, H., 1987, A new group of fluorescent pH-indicators for an extended pH-range, Anal. Chem. 327: 347–350.Google Scholar
  100. 100.
    Murtaza, Z., Chang, Q., Rao, G., Lin, H., and Lakowicz, J. R., 1997, Long-lifetime metal—ligand pH probes, Anal. Biochem. 247: 216–222.Google Scholar
  101. 101.
    de Silva, A. P., Nimal Gunaratne, H. Q., and Rice, T. E., 1996, Proton-controlled switching of luminescence in lanthanide complexes in aqueous solution: pH sensors based on long-lived emission, Angew. Chem. Int. Ed. Engl. 35: 2116–2118.Google Scholar
  102. 102.
    Bryan, A. J., de Silva, P., de Silva, S. A., Rupasinghe, R. A. D. D., and Sandanayake, K. R. A. S., 1989, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors 4: 169–179.Google Scholar
  103. 103.
    de Silva, A. P., Gunaratne, H. Q. N., Habib-Jiwan, J.-L, McCoy, C. P., Rice, T. E., and Soumillion, J.-P., 1995, New fluorescent model compounds for the study of photoinduced electron transfer: The influence of a molecular electric field in the excited state, Angew. Chem. Int. Ed. Engl. 34: 1728–1731.Google Scholar
  104. 104.
    Akkaya, E. U., Huston, M. E., and Czamik, A. W., 1990, Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution, J. Am. Chem. Soc. 112: 3590–3593.Google Scholar
  105. 105.
    Fages, F., Desvergene, J. P., Bouas-Laurent, H., Marsau, P., Lehn, J.-M., Kotzyba-Hibert, F., Albrecht-Gary, A. M., and Al-Joubbeh, M., 1989, Anthraceno-cryptands: A new class of cation-complexing macrobicyclic fluorophores, J. Am. Chem. Soc. 111: 8672–8680.Google Scholar
  106. 106.
    de Silva, A. P., and de Silva, S. A., 1986, Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH, Anal. Biochem. 1986: 1709–1710.Google Scholar
  107. 107.
    David-Duflho, M., Montenay-Garestier, T., and Devynck, M.-A., 1989, Fluorescence measurements of free Cat+ concentration in human erythrocytes using the CaZ+ indicator Fura-2, Cell Calcium 9: 167–179.Google Scholar
  108. 108.
    Zhujun, H., and Seitz, W. R., 1984, A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5, Anal. Chim. Acta 160: 47–55.Google Scholar
  109. 109.
    Hirshfield, K. M., Toptygin, D., Packard, B. S., and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.Google Scholar
  110. 110.
    Tolosa, L., Szmacinski, H., Rao, G., and Lakowicz, J. R., 1997, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Anal. Biochem. 250: 102–108.Google Scholar
  111. 111.
    Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., 1989, Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts, Biophys. J. 56: 1071–1081.Google Scholar
  112. 112.
    Illner, H., McGuigan, J. A. S., and Luthi, D., 1992, Evaluation of mag-fura-5, the new fluorescent indicator for free magnesium measurements, Eur. J. PhysioL, 422: 179–184.Google Scholar
  113. 113.
    Kricka, L. J., Skogerboe, K. J., Hage, D. A., Schoeff, L., Wang, J., Sokol, L. J., Chan, D. W., Ward, K. M., and Davis, K. A., 1997, Clinical chemistry, Anal. Chem. 69: 165R - 229R.Google Scholar
  114. 114.
    Lippitsch, M. E., Draxler, S., and Kieslinger, D., 1997, Luminescence lifetime-based sensing: New materials, new devices, Sensors Actuators B 38–39: 96–102.Google Scholar
  115. 115.
    Bright, F. V., and McCown, L. B., 1985, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroscopy, Talanta 32 (1): 15–18.Google Scholar
  116. 116.
    Dandliker, W. B., and de Saussure, V. A., 1970, Fluorescence polarization in immunochemistry, Immunochemistry 7: 799–828.Google Scholar
  117. 117.
    Lipshutz, R. J., Morris, D., Chee, M, Hubbell, E., Kozal, M. J., Shah, N., Shen, N., Yang, R., and Fodor, S. P. A., 1995, Using oligonucleotide probe arrays to access genetic diversity, Bio Techniques 19 (3): 442–447.Google Scholar
  118. 118.
    Mooney, J. E, Hunt, A. J., McIntosh, J. R., Liberko, C. A., Walba, D. M., and Rogers, C. T., 1996, Patterning of functional antibodies and other proteins by photolithography of silane monolayers, Proc. Natl. Acad. Sci. U.S.A. 93: 12287–12291.Google Scholar
  119. 119.
    Morris, S. J., Wiegmann, T. B., Welling, L. W., and Chronwall, B. M., 1994, Rapid simultaneous estimation of intracellular calcium and pH, Methods Cell Biol. 40: 183–220.Google Scholar
  120. 120.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388: 882–887.Google Scholar
  121. 121.
    Albano, C. R., Randers-Eichhorn, L., Bentley, W. E., and Rao, G., 1998, Green fluorescent protein as a real time quantitative reporter of heterogeneous protein production, Biotechnol. Prog. 14: 351–554.Google Scholar
  122. 122.
    Randers-Richhorn, L, Albano, C. R., Sipior, J., Bentley, W. E, and Rao, G., 1997, On-line green fluorescent protein sensor with LED excitation, Biotechnol. Bioeng. 55: 921–926.Google Scholar
  123. 123.
    Ichinose, N., Schwedt, G., Schnepel, F. M., and Adachi, K., 1987, Fluorometric Analysis in Biomedical Chemistry, John Wiley & Sons, New York.Google Scholar
  124. 124.
    Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.Google Scholar
  125. 125.
    Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.Google Scholar
  126. 126.
    Tsien, R. Y., Rink, T. J., and Poenie, M., 1985, Measurement of cytosolic free Cat+ in individual small cells using fluorescence microscopy with dual excitation wavelengths, Cell Calcium 6: 145–157.Google Scholar
  127. 127.
    Iatridou, H., Foukaraki, E., Kuhn, M. A., Marcus, E. M., Haugland, R. P., and Katerinopoulos, H. E., 1994, The development of a new family of intracellular calcium probes, Cell Calcium 15: 190–198.Google Scholar
  128. 128.
    Akkaya, E. U., and Lakowicz, J. R., 1993, Styryl-based wavelength ratiometric probes: A new class of fluorescent calcium probes with long wavelength emission and a large Stokes’ shift, Anal. Biochem. 213: 285–289.Google Scholar
  129. 129.
    Minta, A., Kao, J. P. Y., and Tsien, R. Y., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. BioL Chem. 264: 8171–8178.Google Scholar
  130. 130.
    Eberhard, M., and Erne, P., 1991, Calcium binding to fluorescent calcium indicators: Calcium green, calcium orange and calcium crimson, Biochem. Biophy. Res. Comm. 180: 209–215.Google Scholar
  131. 131.
    Lakowicz, J. R., Szmacinski, H., and Johnson, M. L., 1992, Calcium concentration imaging using fluorescence lifetimes and long-wavelength probes, J. Fluoresc. 2 (1): 47–62.Google Scholar
  132. 132.
    Hirshfield, K. M., Toptygin, D., Packard, B. S., and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.Google Scholar
  133. 133.
    Miyoshi, N., Hara, K., Kimura, S., Nakanishi, K., and Fukuda, M., 1991, A new method of determining intracellular free Cat+ concentration using Quin-2 fluorescence, Photochem. Photobiol. 53: 415–418.Google Scholar
  134. 134.
    Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., and Johnson, M. L., 1992, Fluorescence lifetime imaging of calcium using Quin-2, Cell Calcium 13: 131–147.Google Scholar
  135. 135.
    Oguz, U., and Akkaya, E. U., 1997, One-pot synthesis of a red-fluorescent chemosensor from an azacrown, phloroglucinol and squaric acid: A simple in-solution construction of a functional molecular device, Tetrahedron Lett. 38: 4509–4512.Google Scholar
  136. 136.
    Akkaya, E. U., and Turkyilmaz, S., 1997, A squaraine-based near IR fluorescent chemosensor for calcium, Tetrahedron Lett. 38: 4513–4516.Google Scholar
  137. 137.
    Wahl, M., Lucherini, M. J., and Gruenstein, E., 1990, Intracellular Cat+ measurement with Indo-1 in substrate-attached cells: Advantages and special considerations, Cell Calcium 11: 487–500.Google Scholar
  138. 138.
    Groden, D. L., Guan, Z., and Stokes, B. T., 1991, Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength, Cell Calcium 12: 279–287.Google Scholar
  139. 139.
    David-Duflho, M., Montenay-Garestier, T., and Devynck, M.-A., 1989, Fluorescence measurements of free Cat+ concentration in human erythrocytes using the CaZ+ indicator Fura-2, Cell Calcium 9: 167–179.Google Scholar
  140. 140.
    Hirshfield, K. M., Toptygin, D., Grandhige, G., Kim, H., Packard, B. Z., and Brand, L., 1996, Steady-state and time-resolved fluorescence measurements for studying molecular interactions: Interaction of a calcium-binding probe with proteins, Biophys. Chem. 62: 25–38.Google Scholar
  141. 141.
    Kao, J. P. Y., 1994, Practical aspects of measuring [CaZ+] with fluorescent indicators, Methods Cell Biol. 40: 155–181.Google Scholar
  142. 142.
    Morris, S. J., Wiegmann, T. B., Welling, L. W., and Chronwall, B. M., 1994, Rapid simultaneous estimation of intracellular calcium and pH, Methods Cell Biol. 40: 183–220.Google Scholar
  143. 143.
    Scanlon, M., Williams, D. A., and Fay, F. S., 1987, A CaZ+-insensitive form of fura-2 associated with polymorphonuclear leukocytes, J. BioL Chem. 262: 6308–6312.Google Scholar
  144. 144.
    Bourson, J., Pouget, J., and Valeur, B., 1993, Ion-responsive fluorescent compounds. 4. Effect of cation bonding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers, J. Phys. Chem. 97: 4552–4557.Google Scholar
  145. 145.
    Dumon, P., Jonusauskas, G., Dupuy, E, Pee, P., Rulliere, C., Letard, J. F., and Lapouyade, R., 1994, Picosecond dynamics of cationmacrocycle interactions in the excited state of an intrinsic fluorescence probe: The calcium complex of 4-(N-monoaza-15crown-5)-4’-phenylstilbene, J. Phys. Chem. 98: 10391–10396.Google Scholar
  146. 146.
    Letard, J.-E, Lapouyade, R., and Rettig, W., 1993, Chemical engineering of fluorescence dyes, Mol. Cryst. Liq. Cryst. 236: 41–46.Google Scholar
  147. 147.
    Rurack, K., Bricks, J. L., Kachkovski, A., and Resch, U., 1997, Complexing fluorescence probes consisting of various fluorophores linked to 1-aza-15-crown-5, J. Fluoresc. 7 (1): 63S - 66S.Google Scholar
  148. 148.
    Lohr, H.-G., and Fogtle, F., 1985, Chromo-and fluoroionophores. A new class of dye reagents, Acc. Chem. Res. 18: 65–72.Google Scholar
  149. 149.
    de Silva, A. P., Nimal Qunaratne, H. Q., and Maguire, G. E. M., 1994, Off—on fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates, J. Chem. Soc., Chem. Commun. 1994: 1213–1214.Google Scholar
  150. 150.
    Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E., 1989, A fluorescent indicator for measuring cytosolic free magnesium, Am. J. Physiol. 256: C540–0548.Google Scholar
  151. 151.
    Illner, H., McGuigan, J. A. S., and Luthi, D., 1992, Evaluation of mag-fura-5, the new fluorescent indicator for free magnesium measurements, Eur. J. PhysioL, 422: 179–184.Google Scholar
  152. 152.
    Morelle, B., Salmon, J.-M., Vigo, J., and Viallet, P., 1993, Proton, Mgt+ and protein as competing ligands for the fluorescent probe, mag-indo-1: A first step to the quantification of intracellular Mgt+ concentration, Photochem. Photobiol. 58: 795–802.Google Scholar
  153. 153.
    Szmacinski, H., and Lakowicz, J. R., 1996, Fluorescence lifetime characterization of magnesium probes: Improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry, J. Fluoresc. 6 (2): 83–95.Google Scholar
  154. 154.
    James, T. D., Sandanayake, K. R. A. S., and Shinkai, S., 1994, Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine, J. Chem. Soc., Chem. Commun. 1994: 477–478.Google Scholar
  155. 155.
    Yoon, J., and Czarnik, A. W., 1992, Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching, J. Am. Chem. Soc. 114: 5874–5875.Google Scholar
  156. 156.
    James, T. D., Sandanayake, K. R. A. S., and Shinkai, S., 1995, Chiral discrimination of monosaccharides using a fluorescent molecular sensor, Nature 74: 345–347.Google Scholar
  157. 157.
    Hemmila, I. A., 1992, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York.Google Scholar
  158. 158.
    Van Dyke, K., and Van Dyke, R. (eds.), 1990, Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, Florida.Google Scholar
  159. 159.
    Ozinskas, A. J., 1994, Principles of fluorescence immunoassay, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 449–496.Google Scholar
  160. 160.
    Gosling, J. P., 1990, A decade of development in immunoassay methodology, Clin. Chem. 36: 1408–1427.Google Scholar
  161. 161.
    Davidson, R. S., and Hilchenbach, M. M., 1990, The use of fluorescent probes in immunochemistry, Photochem. Photobiol. 52: 431–438.Google Scholar
  162. 162.
    Vo-Dinh, T., Sepaniak, M. J., Griffin, G. D., and Alarie, J. P., 1993, Immunosensors: Principles and applications, Immunomethods 3: 85–92.Google Scholar
  163. 163.
    Berson, S., and Yalow, R., 1959, Quantitative aspects of the reaction between insulin and insulin-binding antibody, J. Clin. Invest. 38: 1996–2016.Google Scholar
  164. 164.
    Lovgren, T., Hemmila, I., Pettersson, K., and Halonen, P., 1985, Tune-resolved fluorometry in immunoassay, in Alternative Immunoassays, W. P. Collins (ed.), John Wiley & Sons, New York, pp. 203–217.Google Scholar
  165. 165.
    Diamandis, E. P., 1988, Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications, Clin. Biochem. 21: 139–150.Google Scholar
  166. 166.
    Lövgren, T., and Pettersson, K., 1990, Time-resolved fluoroimmunoassay, advantages and limitations, in Luminescence Immunoassay and Molecular Applications, K. Van Dyke and R. Van Dyke (eds.), CRC Press, Boca Raton, Florida, pp. 234–250.Google Scholar
  167. 167.
    Khosravi, M., and Diamandis, E. E, 1987, Immunofluorometry of choriogonadotropin by time-resolved fluorescence spectroscopy, a new europium chelate as label, Clin. Chem. 33: 1994–1999.Google Scholar
  168. 168.
    Soini, E., 1984, Pulsed light, time-resolved fluorometric immunoassay, in Monoclonal Antibodies and New Trends in Immunoassays, C. A. Bizollon (ed.), Elsevier Science Publishers, New York, pp. 197–208.Google Scholar
  169. 169.
    Morrison, L. E., 1988, Time-resolved detection of energy transfer: Theory and application to immunoassays, Anal. Biochem. 174: 101–120.Google Scholar
  170. 170.
    Ullman, E. F., Schwarzberg, M., and Rubenstein, K. E., 1976, Fluorescent excitation transfer immunoassay: A general method for determination of antigens, J. Biol. Chem. 251: 4172–4178.Google Scholar
  171. 171.
    Ozinskas, A. J., Malak, H., Joshi, J., Szmacinski, H., Britz, J., Thompson, R. B., Koen, P. A., and Lakowicz, J. R., 1993, Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy, Anal. Biochem. 213: 264–270.Google Scholar
  172. 172.
    Lakowicz, J. R., Maliwal, B., Ozinskas, A., and Thompson, R. B., 1993, Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry, Sensors Actuators B 12: 6570.Google Scholar
  173. 173.
    Bright, F. V., and McCown, L. B., 1985, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroscopy, Talanta 32 (1): 15–18.Google Scholar
  174. 174.
    Dandliker, W. B., and de Saussure, V. A., 1970, Fluorescence polarization in immunochemistry, Immunochemistry 7: 799–828.Google Scholar
  175. 175.
    Spencer, R. D., Toledo, F. B., Williams, B. T., and Yoss, N. L., 1973, Design, construction, and two applications for an automated flow-cell polarization fluorometer with digital read out: Enzyme—inhibitor (antitrypsin) assay and antigen—antibody (insulin—insulin antiserum) assay, Clin. Chem. 19: 838–844.Google Scholar
  176. 176.
    Kobayashi, Y., Amitani, K., Watanabe, F., and Miyai, K., 1979, Fluorescence polarization immunoassay for cortisol, Clin. Chim. Acta 92: 241–247.Google Scholar
  177. 177.
    Cox, H., Whitby, M., Nimmo, G., and Williams, G., 1993, Evaluation of a novel fluorescence polarization immunoassay for teicoplanin, Antimicrob. Agents Chemother. 37: 1924–1926.Google Scholar
  178. 178.
    Mastin, S. H., Buck, R. L., and Mueggler, P. A.,1993, Performance of a fluorescence polarization immunoassay for teicoplanin in serum, Diagn. Microbial. Infect. Dis. 16: 17–24.Google Scholar
  179. 198.
    Romoser, V. A., Hinkle, P. M., and Persechini, A., 1997, Detection in living cells of Cat+ dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence, A new class of fluorescent indicators J. Biol. Chem. 272: 13270–13274.Google Scholar
  180. 199.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388: 882–887.Google Scholar
  181. 200.
    Albano, C. R., Randers-Eichhorn, L., Bentley, W. E., and Rao, G., 1998, Green fluorescent protein as a real time quantitative reporter of heterogeneous protein production, Biotechnol. Prog. 14: 351–554.Google Scholar
  182. 201.
    Randers-Richhorn, L, Albano, C. R., Sipior, J., Bentley, W. E, and Rao, G., 1997, On-line green fluorescent protein sensor with LED excitation, Biotechnol. Bioeng. 55: 921–926.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Joseph R. Lakowicz
    • 1
  1. 1.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations